Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

How separable is a space? That depends on your set theory!


Author: Franklin D. Tall
Journal: Proc. Amer. Math. Soc. 46 (1974), 310-314
MSC: Primary 54B10; Secondary 54E30
DOI: https://doi.org/10.1090/S0002-9939-1974-0362188-5
MathSciNet review: 0362188
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A. Wilansky has raised the question of the productive behaviour of the property of having a countable set, such that each point is a sequential limit point of the set. The set-theoretic consistency and independence of the proposition that this property is preserved by products of $ {\aleph _1}$ factors is established.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. MR 13, 264. MR 0043449 (13:264f)
  • [2] D. D. Booth, Countably indexed ultrafilters, Thesis, University of Wisconsin, Madison, Wis., 1969.
  • [3] L. Bukovsky, Borel subsets of metric separable spaces, General Topology and its Relations to Modern Analysis and Algebra II, Proc. Second Prague Topological Sympos., 1966, Academia, Prague; Academic Press, New York, 1967, pp. 83-86. MR 38 #51. MR 0231723 (38:51)
  • [4] W. W. Comfort, A short proof of Marczewski's separability theorem, Amer. Math. Monthly 76 (1969), 1041-1042. MR 40 #1993. MR 0248742 (40:1993)
  • [5] N. E. Foland and R. B. Kirk, Products of spaces with $ m$-dense subsets (preprint).
  • [6] K. Gödel, Consistency-proof for the generalized continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 220-224.
  • [7] R. W. Heath, Screenability, pointwise paracompactness and metrization of Moore spaces, Canad. J. Math. 16 (1964), 763-770. MR 29 #4033. MR 0166760 (29:4033)
  • [8] I. Juhász, Cardinal functions in topology, Mathematical Centre, Amsterdam, 1971.
  • [9] D. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178. MR 42 #5787. MR 0270904 (42:5787)
  • [10] F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46. MR 10, 689. MR 0029958 (10:689a)
  • [11] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. (2) 94 (1971), 201-245. MR 45 #3212. MR 0294139 (45:3212)
  • [12] F. D. Tall, An alternative to the continuum hypothesis and its uses in general topology (preprint).
  • [13] A. Wilansky, How separable is a space? Amer. Math. Monthly 79 (1972), 764-765. MR 1536789

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B10, 54E30

Retrieve articles in all journals with MSC: 54B10, 54E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0362188-5
Keywords: Separable, sequential limit, Martin's axiom, topological product, set-theoretic consistency
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society