Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Matrix group monotonicity


Authors: Abraham Berman and Robert J. Plemmons
Journal: Proc. Amer. Math. Soc. 46 (1974), 355-359
MSC: Primary 15A09
DOI: https://doi.org/10.1090/S0002-9939-1974-0352116-0
MathSciNet review: 0352116
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Matrices for which the group inverse exists and is nonnegative are studied. Such matrices are characterized in terms of a generalization of monotonicity. In particular, nonnegative matrices with this property are characterized in terms of their nonnegative rank factorizations.


References [Enhancements On Off] (What's this?)

  • [1] A. Ben Israel and T. N. E. Greville, Generalized inverses: Theory and practice, Wiley, New York (to appear). MR 1987382 (2004b:15008)
  • [2] A. Berman, Nonnegative matrices which are equal to their generalized inverse, Linear Algebra and Appl. (to appear). MR 0352143 (50:4630)
  • [3] A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math. 22 (1972), 155-161. MR 46 #7254. MR 0308139 (46:7254)
  • [4] -, Cones and iterative methods for best least squares solutions to linear systems, SIAM J. Numer. Anal. 11 (1974), 145-154. MR 0348984 (50:1478)
  • [5] A. Berman and R. J. Plemmons, Inverses of nonnegative matrices, Linear and Multilinear Algebra 2 (1974) (to appear). MR 0364282 (51:537)
  • [6] -, Rank factorization of nonnegative matrices, SIAM Rev. 15 (1973), 655.
  • [7] R. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968), 182-197. MR 37 #2769. MR 0227184 (37:2769)
  • [8] F. Harary and H. Minc, Which nonnegative matrices are self-inverse?, Technion Preprint series No. Mt. 159, Haifa, Israel. MR 0396629 (53:491)
  • [9] R. Plemmons and R. Cline, The generalized inverse of a nonnegative matrix, Proc. Amer. Math. Soc. 31 (1972), 46-50. MR 44 #2759. MR 0285541 (44:2759)
  • [10] D. J. Richman and H. Schneider, Primes in the semigroup of nonnegative matrices, Linear and Multilinear Algebra (to appear). MR 0354739 (50:7216)
  • [11] H. Schwerdtfeger, Introduction to linear algebra and the theory of matrices, 2nd ed., Noordhoff, Groningen, 1962. MR 0038923 (12:470g)
  • [12] R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A09

Retrieve articles in all journals with MSC: 15A09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0352116-0
Keywords: Group inverse, matrix monotonicity, Moore-Penrose inverse, nonnegative matrix, nonnegative rank factorization
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society