LINEAR SUPERPOSITION OF SMOOTH FUNCTIONS

ROBERT KAUFMAN

ABSTRACT. We give a simple proof of the impossibility of represent-
ing an arbitrary continuous function as a superposition (1), when
F_1, \ldots, F_N are smooth mappings of R^{n+1} to R^n. The main tool is the
Riemann-Lebesgue lemma.

Let \(V \) be an open subset of Euclidean space \(\mathbb{R}^{n+1} \), and \(F_1, \ldots, F_N \)
continuously differentiable mappings of \(V \) into \(\mathbb{R}^n \). Each \(N \)-tuple of bound-
ed continuous functions \((g_1, \ldots, g_N) \) defined on \(\mathbb{R}^n \) determines a super-
position

\[
T(g_1, \ldots, g_N) = \sum_{k=1}^{N} g_k \circ F_k.
\]

This is an element of the Banach space \(C(V) \) of functions bounded and
continuous on \(V \).

Theorem. The range of the operator \(T \) is of first category in \(C(V) \),
whence the superpositions (1) do not exhaust \(C(V) \).

This theorem was proved for \(n = 2 \) by Vitushkin and Henkin [5]; in
fact they proved that the range of \(T \) is not even dense in \(C(V) \). For \(n = 3 \)
a stronger result was obtained by Fridman, but only for mappings of class
\(C^2(V) \) [2]. The theorem to be proved is neither implied by the work cited,
nor does it imply the strongest results known in special cases. See also
[1], [3], [4].

1. Let \(x_0 \) be a generic point for \(F_1, \ldots, F_N \), that is, the rank of each
Jacobian matrix \(J(F_k) \) attains a local maximum at \(x_0 \). Such points form
a dense \(G_\delta \) in \(V \). Then \(J(F_k) \) has rank \(d_k \) throughout a neighborhood \(W \)
of \(x_0 \) and (for an appropriate \(W \) \(F_k \) can be factored through \(R^{d_k} \):

Received by the editors October 15, 1973.

Key words and phrases. Smooth functions, Kolmogorov superposition theorem,
Baire category.

1The author is an Alfred P. Sloan Fellow.

Copyright © 1974, American Mathematical Society
$G_k \circ H_k$, where H_k maps W into R^{d_k}. In the superpositions (1) we can replace F_k by H_k, provided we allow functions g_k defined on R^{d_k}. Let L be a linear functional on R^{n+1} whose Jacobian matrix contains a row not spanned by $J(F_k)(x_0)$ for each individual function F_k. On a small neighborhood, each mapping $H_k = (L, H_k)$ of W into R^{d_k+1} is absolutely continuous in the following sense: there is a nonnegative function ϕ_k on R^{d_k+1} and an identity

$$\int_W f \circ H_k^*(x) \, dx = \int_{R^{d_k+1}} f(y) \phi_k(y) \, dy$$

whenever $f \geq 0$ is measurable on R^{d_k+1}. Using local coordinates on R^{n+1} we can obtain a refinement of the absolute continuity: let ψ be continuous and have compact support in W; then the function ψ_k defined by $\int f \circ H_k^*(x) \psi(x) \, dx$ is continuous on R^{d_k+1} (and has compact support).

2. For computations it is convenient to use coordinates (t, u) in R^{d_k+1}: t is real and u is in R^{d_k}. We apply the change of variable formula above, with $f(t, u) = e^{i\lambda t} h(u)$; for the moment $h \in L^\infty(R^{d_k})$. This yields

$$\int e^{i\lambda L} h \circ H_k(x) \psi(x) \, dx = \int \int e^{i\lambda t} h(u) \psi_k(t, u) \, dt \, du.$$

We now suppose that $h = 0$ outside $H_k(W)$, since this leaves $H_k \circ h$ unchanged. The last integral has a modulus not exceeding

$$\|b\|_1 \sup \left| \int e^{i\lambda t} \psi_k(t, u) \, dt \right| = \|b\|_1 \cdot M_k(\lambda),$$

say. But $M_k(\lambda) \to 0$ as $\lambda \to +\infty$, because $\psi_k(t, u)$ has compact support in R^{d_k+1}—this is a simple extension of the Riemann-Lebesgue lemma. Because $\int e^{i\lambda L} \psi(x) \, dx = c > 0$ for all λ, we have a stronger version of the main theorem:

The set T_1 of superpositions $T(g_1, \ldots, g_N)$, with $\|g_k\|_1 \leq 1$ in $L^1(R^{d_k})$, has a closure \overline{T}_1 in $L^1(W)$, nowhere dense in $C(W)$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801