A NOTE ON THE SECOND SMALLEST PRIME k TH POWER NONRESIDUE

RICHARD H. HUDSON

ABSTRACT. Upper bounds for the second smallest prime kth power nonresidue, which we denote by $g_2(p, k)$, have been given by many authors. Theorem 1 represents an improvement of these bounds, at least for odd k. We also give specific estimates for $g_2(p, k)$, and an upper bound for the nth ($n \geq 2$) smallest prime kth power nonresidue as a function of the first $n - 1$ prime nonresidues. Upper bounds for $g_2(p, k)$ should take on new interest since the author has shown elsewhere that the first two consecutive kth power nonresidues are bounded above by the product of the first two prime nonresidues.

1. Introduction. Throughout k will be an integer ≥ 2 and p will be a prime $= 1$ (mod k). The nth smallest prime kth power nonresidue, $n \geq 2$, will be denoted by $g_n(p, k)$. In [4] the author investigated at some length the problem of finding upper bounds for $g_2(p, k)$. The major purpose of this paper is to improve the bounds given in [4, Theorem 4], which are, to the best of our knowledge, the sharpest upper bounds known for $g_2(p, k)$ for odd k. In particular, we are now able to prove the following result.

Theorem 1. For each $\epsilon > 0$ and $p > 5$,

\[g_2(p, k) = O_{\epsilon, k}(p^{k/4(k-1)+\epsilon}). \]

We also note that several other theorems in [4] can be improved using recent work of P. D. T. A. Elliott [2], [3], Hugh L. Montgomery [8], and K. K. Norton [9], [10].

In the following proof, $h_j(p, k)$, $j = 0, 1, \ldots, k - 1$, will denote the smallest positive representative of the jth coset formed with respect to the subgroup of the kth powers mod p. In particular, for all k, $h_0(p, k) = 1$, $h_1(p, k) = g_1(p, k)$, $g_2(p, k)$ denotes the smallest positive kth power nonresidue in a coset different than the coset to which $h_1(p, k)$ belongs, h_{k-1} denotes the
smallest positive \(k \)th power nonresidue in a coset different than the cosets to which \(h_1, h_2, \ldots, h_{k-2} \) belong. In the following proof we assume that \(k \geq 3 \) since Theorem 1 is well known for \(k = 2 \). We also observe that \(g_2(p, k) \) is less than \(p \) if \(p \geq 5 \), since otherwise the \(k \)th power nonresidues of \(p \) consist only of powers of \(g_1(p, k) \) and these are clearly insufficiently numerous.

2. Proof of Theorem 1. We want to show that for each \(\epsilon > 0 \) and \(k \geq 3 \) there exists a constant \(c_1(\epsilon, k) \) such that for every prime \(p > 5 \),

\[
(2.1) \quad g_2(p, k) < c_1(\epsilon, k)p^{k/4(k-1)+\epsilon}.
\]

Assume first, that for each \(\epsilon > 0 \) and \(k \geq 3 \), there exists a constant \(c_2(\epsilon, k) \) such that for every odd prime \(p \),

\[
(2.2) \quad g_1(p, k) < c_2(\epsilon, k)p^{1/4(k-1)+\epsilon/(k-1)}.
\]

It follows from [4, Lemma 2] that

\[
(2.3) \quad g_2(p, k) \leq g_1(p, k) \cdot s_n + 1
\]

where \(s_n \) denotes the maximum number of consecutive integers in any of the nonresidue cosets formed with respect to the subgroup of \(k \)th powers mod \(p \). It is well known that \(s_n < c_3p^{1/4}\log p \) for all \(k \) where \(c_3 \) is an absolute constant (in fact \(c_3 < 3.230 \); see [6]). Of course, \(\log p = o(p^{\epsilon/(k-1)}) \) and, consequently, if (2.2) holds, (2.1) follows at once from (2.3).

Conversely, assume there exists \(\epsilon > 0 \) or \(k \geq 3 \) such that for every constant \(c_4(\epsilon, k) \), there exist infinitely many primes with

\[
(2.4) \quad g_1(p, k) > c_4(\epsilon, k)p^{1/4(k-1)+\epsilon/(k-1)}.
\]

Norton [9] has shown that for each \(\epsilon > 0 \) and \(k \geq 2 \) there must exist a constant \(c_5(\epsilon, k) \) such that for every odd prime \(p \),

\[
(2.5) \quad h_{k-1}(p, k) < c_5(\epsilon, k)p^{1/4+\epsilon}.
\]

If (2.4) and (2.5) both hold, we must have \(h_{k-1}(p, k) < (g_1(p, k))^{k-1} \).

But if \(g_2(p, k) > h_{k-1}(p, k) \), and if \(x \) is any \(k \)th power nonresidue such that \(1 < x \leq h_{k-1}(p, k) \), then clearly \(x = (g_1(p, k))^a y \), where \(y \) is a \(k \)th power residue and \(1 \leq a \leq k - 2 \). Hence, the inequalities (2.4) and \(g_2(p, k) > h_{k-1}(p, k) \) imply that there are at most \(k - 1 \) cosets of the subgroup of \(k \)th powers mod \(p \), a contradiction. Consequently, if (2.4) holds, we have \(g_2(p, k) \leq h_{k-1}(p, k) \), and (2.1) follows from (2.5).
3. Specific estimates. We shall call an upper bound for \(g_n(p, k) \) a specific estimate if it is of the form \(g_n(p, k) < cp^\alpha \), where \(c \) and \(\alpha \) are specified real numbers and the bound holds for all \(p \) greater than a specified real number. We shall call a specific estimate a universal specific estimate if it is a specific estimate which holds for all \(p \) for which \(g_n(p, k) \) exists.

L. K. Hua [7] has given the best specific estimate for \(g_2(p, k) \) for \(k = 2 \). In particular Hua showed that for \(k = 2 \) (and hence for even \(k \)) and \(p > e^{250} \),

\[
g_2(p, k) < (57600p)^{5/16}.
\]

Using [4, Theorem 3] and K. K. Norton's [10] recently announced improvement of his universal specific estimate for \(g_1(p, k) \), namely \(g_1(p, k) < 1.1p^{1/4}(\log p + 4) \), it is possible to slightly improve Corollary 1 in [4, p. 103].

Theorem 2. For each \(k \) and all \(p \geq 5 \),

\[
g_2(p, k) < 4p^{7/16}(1.1 \log p + 4.4)^{3/4} + 8.8p^{1/4} \log p + 36.2.
\]

Norton [10] has also announced a universal specific estimate for the maximum number, \(S \), of consecutive integers in any coset formed with respect to the subgroup of \(k \)th powers mod \(p \), namely \(S < 4.1p^{1/4}\log p \). The author has shown in [6] that this estimate can be improved to \(S < 3.616p^{1/4}\log p \). This allows us to make specific our estimate [4, Lemma 3] for the \(n \)th smallest prime \(k \)th power nonresidue as a function of the first \(n - 1 \) prime nonresidues.

Theorem 3. Let \(n \) be any integer \(\geq 2 \). Then

\[
g_n(p, k) < (3.616p^{1/4} \log p + 1) \left(\prod_{r=1}^{n-1} g_r(p, k) \right) + 1.
\]

In [5] the author noted that if \(g_1(p, k) < 2^{1/4}p^{1/4} \), then \(S < 2.9086p^{1/4}\log p \). This yields the following exemplary corollary to Theorem 3.

Corollary. Let \(p \) be a prime for which \(g_1(p, k) = 2 \) so that \(g_2(p, k) \) is the smallest odd \(k \)th power nonresidue. Then

\[
g_2(p, k) < 5.8172p^{1/4} \log p + 3.
\]

This universal specific estimate for the smallest odd \(k \)th power nonresidue improves earlier estimates of Brauer [1] and the author [4, Theorem 1].

In conclusion, we note that Theorem 7 of [4] appears rather naive in
R. H. HUDSON

retrospect. In fact Hugh L. Montgomery has informed me that if the generalized Riemann hypothesis is true, then $g_n(p, k) = O((\log^2 p)$ for all $n < \log^2 p / \log \log p$; see also [6].

Note added in Proof (July, 1974). In the near future we hope to improve Theorem 1 considerably. In particular we expect to prove, without hypotheses, that $g_n(p, k) = O(p^{1/4 + \varepsilon})$ for every $p > p_0(\varepsilon)$ and every $n \leq (c \log p) / \log \log p$ (for some positive constant c).

REFERENCES

6. ———, The least pair of consecutive kth power non-residues (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAROLINA 29208

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use