A note on the second smallest prime th power nonresidue

Author:
Richard H. Hudson

Journal:
Proc. Amer. Math. Soc. **46** (1974), 343-346

MSC:
Primary 10H35

DOI:
https://doi.org/10.1090/S0002-9939-1974-0364139-6

MathSciNet review:
0364139

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Upper bounds for the second smallest *prime* th power nonresidue, which we denote by , have been given by many authors. Theorem 1 represents an improvement of these bounds, at least for odd . We also give specific estimates for , and an upper bound for the th smallest *prime* th power nonresidue as a function of the first *prime* nonresidues. Upper bounds for should take on new interest since the author has shown elsewhere that the first two consecutive th power nonresidues are bounded above by the product of the first two prime nonresidues.

**[1]**Alfred Brauer,*On the non-existence of the Euclidean algorithm in certain quadratic number fields*, Amer. J. Math.**62**(1940), 697–716. MR**0002994**, https://doi.org/10.2307/2371480**[2]**P. D. T. A. Elliott,*On the mean value of 𝑓(𝑝)*, Proc. London Math. Soc. (3)**21**(1970), 28–96. MR**0266881**, https://doi.org/10.1112/plms/s3-21.1.28**[3]**-,*On the least pair of consecutive quadratic non-residues*, Proc. Number Theory Conference, Univ. Colorado, Boulder, Colo., 1972, pp. 75-79.**[4]**Richard H. Hudson,*Prime 𝑘-th power non-residues*, Acta Arith.**23**(1973), 89–106. MR**0321849**, https://doi.org/10.4064/aa-23-1-89-106**[5]**Richard H. Hudson,*A bound for the first occurrence of three consecutive integers with equal quadratic character*, Duke Math. J.**40**(1973), 33–39. MR**0314743****[6]**-,*The least pair of consecutive th power non-residues*(to appear).**[7]**Loo-Keng Hua,*On the distribution of quadratic nonresidues and the Euclidean algorithm in real quadratic fields. I*, Trans. Amer. Math. Soc.**56**(1944), 537–546. MR**0011481**, https://doi.org/10.1090/S0002-9947-1944-0011481-X**[8]**Hugh L. Montgomery,*Topics in multiplicative number theory*, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR**0337847****[9]**Karl K. Norton,*Upper bounds for 𝑘𝑡ℎ power coset representatives modulo 𝑛*, Acta Arith.**15**(1968/1969), 161–179. MR**0240065**, https://doi.org/10.4064/aa-15-2-161-179**[10]**Karl K. Norton,*Bounds for sequences of consecutive power residues. I*, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 213–220. MR**0332697**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10H35

Retrieve articles in all journals with MSC: 10H35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0364139-6

Article copyright:
© Copyright 1974
American Mathematical Society