Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some problems on $ B$-completeness


Author: T. K. Mukherjee
Journal: Proc. Amer. Math. Soc. 46 (1974), 367-374
MSC: Primary 46A30
DOI: https://doi.org/10.1090/S0002-9939-1974-0367613-1
MathSciNet review: 0367613
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give examples to show the following:

1. The product of two $ B$-complete spaces is not necessarily $ {B_r}$-complete.

2. The Mackey dual of a strict LF-space is not necessarily $ {B_r}$-complete.

3. A separable, reflexive, and strict LF-space is not, in general, $ {B_r}$-complete. The second point has reference to a problem of Dieudonné and Schwartz which asks essentially whether the Mackey dual of a strict LF-space is $ B$-complete and which was answered in the negative by Grothendieck.


References [Enhancements On Off] (What's this?)

  • [1] J. Dieudonné and L. Schwartz, La dualité dans les espaces $ (F)$ et (LF), Ann. Inst. Fourier (Grenoble) 1 (1949), 61-101. (1950). MR 12, 417. MR 0038553 (12:417d)
  • [2] V. Dulst, Barreledness of subspaces of countable codimension and the closed graph theorem, Compositio Math. 24 (1972), 227-234. MR 0320683 (47:9219)
  • [3] -, A note on $ B$- and $ {B_r}$-completeness, Math. Ann. 197 (1972), 197-202.
  • [4] A. Grothendieck, Sur les espaces $ (F)$ et (DF), Summa Brasil Math. 3 (1954), 57-123. MR 17, 765. MR 0075542 (17:765b)
  • [5] T. Hussain, Open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965. MR 0178331 (31:2589)
  • [6] S. O. Iyahen, $ D(\tau ;\xi )$-spaces and the closed-graph theorem, Proc. Edinburgh Math. Soc. (2) 16 (1968/69), 89-99. MR 40 #673. MR 0247405 (40:673)
  • [7] G. Köthe, Die Teilraume eines linearen Koordinatenraumes, Math. Ann. 114 (1937), 99-125. MR 1513129
  • [8] W. H. Summers, Products of fully complete spaces, Bull. Amer. Math. Soc. 75 (1969), 1005. MR 40 #682. MR 0247416 (40:682)
  • [9] J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64 (1968), 341-364. MR 36 #5652. MR 0222602 (36:5652)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A30

Retrieve articles in all journals with MSC: 46A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0367613-1
Keywords: $ B$-complete, $ {B_r}$-complete, sequentially closed subspace, LF-space
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society