Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Convexity of vector-valued functions


Authors: Ih Ching Hsu and Robert G. Kuller
Journal: Proc. Amer. Math. Soc. 46 (1974), 363-366
MSC: Primary 46G99; Secondary 26A51
DOI: https://doi.org/10.1090/S0002-9939-1974-0423076-9
MathSciNet review: 0423076
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (\mathcal{B}, \ll )$ be a Banach lattice, and $ (a,b)$ be an open interval on the real line. A function $ F:(a,b) \to \mathcal{B}$ is defined to be weakly convex if there exists a nonnegative nondecreasing continuous function $ G:(a,b) \to \mathcal{B}$ such that $ p[F(S)] + tp[G(s)] \leq p[F(s + t)]$, whenever $ s$ and $ s + t$ are in $ (a,b)$ for each positive linear functional $ p$ on $ \mathcal{B}$. A representation theorem is proved as follows: If $ F$ is weakly convex on $ (a,b)$ and is bounded on an interval contained in $ (a,b)$, then $ (B)\int_{a + \epsilon }^x {G(s)dm = F(x) - F(a + \epsilon )} $, where $ (B)\int_{a + \epsilon }^x {G(s)dm} $ is the Bochner integral of $ G$ on $ [a, \epsilon ,x]$ with $ 0 < \epsilon $ and $ a < \epsilon < x < b$.


References [Enhancements On Off] (What's this?)

  • [1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
  • [2] I. Hsu, Weak convexity of operator-valued functions (unpublished).
  • [3] Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
  • [4] K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, Berlin and New York, 1965. MR 31 #5054.
  • [5] Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR 0438077
  • [6] I. Hsu, A functional inequality and its relation to convexity of vector-valued functions (submitted).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G99, 26A51

Retrieve articles in all journals with MSC: 46G99, 26A51


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0423076-9
Keywords: Weak convexity, Banach lattice, positive linear functional, Bochner integral, order-bounded, metric-bounded, Riesz decomposition theorem, weakly Lebesgue integrable, strongly Lebesgue measurable, Hahn-Banach theorem, strong convexity
Article copyright: © Copyright 1974 American Mathematical Society