GALOIS THEORY AND THE EXISTENCE OF MAXIMAL UNRAMIFIED SUBALGEBRAS

H. F. KREIMER

ABSTRACT. Let B be a commutative ring with 1, let G be a finite group of automorphisms of B, and let A be the subring of G-invariant elements of B. There exists a G-stable, unramified A-subalgebra of B which contains every unramified A-subalgebra of B.

Throughout this paper B will denote a given commutative ring with 1, G will denote a given finite group of automorphisms of B, and A will denote the subring of G-invariant elements of B. Following the terminology of [1], an A-subalgebra A' of B will be called unramified if $A'_p/\mathfrak{p}A'_p$ is a separable algebra over $A_p/\mathfrak{p}A_p$ for every prime ideal \mathfrak{p} in A, where A_p (resp. A'_p) is the ring of fractions of A (resp. A') with respect to the complement of \mathfrak{p} in A.

Lemma. Let m be a maximal ideal of A, and suppose A' is an A-subalgebra of B such that A'/A'_m is a separable A/m-algebra.

(i) The homomorphism of A'/A'_m into B/Bm induced by the inclusion map of A' into B is an injection, by which A'/A'_m may be identified with a subalgebra of B/Bm.

(ii) The dimension of the algebra A'/A'_m over the field A/m does not exceed the order of G.

(iii) A'/A'_m and the subring of G-invariant elements of B/Bm are linearly disjoint subalgebras of the A/m-algebra B/Bm.

Proof. Note that A'/A'_m is a finite-dimensional algebra over the field A/m. More generally, a separable algebra over a commutative ring which is a projective module over that ring is finitely generated as a module by [6, Proposition 1.1]. Therefore A'/A'_m is a semisimple algebra by [4, Chapter 3].
IX, Proposition 7.7 and Theorem 7.10], and $A^{'m}$ must equal the intersection of the maximal ideals of A' which contain it. Since B is integral over A [3, Chapter V, §1, Proposition 22], B is integral over A'. Since every prime ideal of A' is the contraction of a prime ideal of B [3, Chapter V, §2, Theorem 1], it follows that $A^{'m}$ is the contraction of some ideal \mathfrak{p} of B, $B^{'m} \subseteq \mathfrak{p}$, and $A' \cap B^{'m} \subseteq A' \cap \mathfrak{p} = A^{'m}$. But obviously $A^{'m} \subseteq A' \cap B^{'m}$ and, therefore, $A^{'m} = A' \cap B^{'m}$ and the homomorphism of $A'/A^{'m}$ into $B/B^{'m}$ induced by the inclusion map of A' into B is injective.

Let $B' = \Pi_{\sigma\in G} \sigma(A')$, and let H be the group of automorphisms of B' which are restrictions of elements of G. Since each element σ of G induces an A/m-algebra isomorphism of $A'/A^{'m}$ onto $\sigma(A')/\sigma(A^{'m})$, $\sigma(A')/\sigma(A^{'m})$ is a separable A/m-algebra, and $B'/B^{'m}$, which is a homomorphic image of the tensor product of the A/m-algebras $\sigma(A')/\sigma(A^{'m})$, $\sigma \in G$, is a separable algebra over A/m by [2, Propositions 1.4 and 1.5]. Consequently, $B^{'m}$ must equal the intersection of the maximal ideals of B' which contain it. Because m is a maximal ideal of A, the set of maximal ideals of B' which contain $B^{'m}$ coincides with the set of maximal ideals of B' which lie over m. Choose a maximal ideal \mathfrak{m}_0 of B' which lies over m, let $H^Z(\mathfrak{m}_0)$ be the subgroup of $\sigma \in H$ such that $\sigma(\mathfrak{m}_0) \subseteq \mathfrak{m}_0$, and let $H^T(\mathfrak{m}_0)$ be the subgroup of $\sigma \in H^Z(\mathfrak{m}_0)$ which induces the identity automorphism on B'/\mathfrak{m}_0. By [3, Chapter V, §2, Theorem 2], H acts transitively on the set of all prime ideals of B' which lie over m, and B'/\mathfrak{m}_0 is a normal field extension of A/m with Galois group isomorphic to the quotient group $H^Z(\mathfrak{m}_0)/H^T(\mathfrak{m}_0)$. Therefore the prime ideals of B' which lie over m are maximal, their number is finite and equal to $(H: H^Z(\mathfrak{m}_0))$, and B'/\mathfrak{m} is isomorphic to B'/\mathfrak{m}_0 for every maximal ideal \mathfrak{m} of B' which lies over m. B'/\mathfrak{m}_0 is a separable field extension of A/m by [2, Proposition 1.4], and so the dimension of B'/\mathfrak{m}_0 over A/m is equal to the order of the Galois group of B'/\mathfrak{m}_0 over A/m. Letting \mathfrak{m} range over the set of maximal ideals of B' which contract to m, $B'/B^{'m}$ is isomorphic to the direct product of the fields B'/\mathfrak{m} [3, Chapter II, §1, Proposition 5], and the dimension of $B'/B^{'m}$ over A/m must equal

$$[H:H^Z(\mathfrak{m}_0)] \cdot [H^Z(\mathfrak{m}_0):H^T(\mathfrak{m}_0)] = [H:H^T(\mathfrak{m}_0)].$$

Use the homomorphisms induced by the inclusion maps of A' into B' and B' into B to identify $B'/B^{'m}$ with a subalgebra of $B/B^{'m}$ and $A'/A^{'m}$ with a subalgebra of $B'/B^{'m}$. Then neither the dimension of the A/m-algebra $B'/B^{'m}$ nor the dimension of its subalgebra $A'/A^{'m}$ can exceed the order of G.
Finally, letting \overline{A} be the subring of G-invariant elements of B/Bm, it is evident that \overline{A} is an A/m-algebra. If the canonical homomorphism of $(B'/B'm) \otimes_{A/m} \overline{A}$ into B/Bm, which maps $b \otimes a$ onto ba for $b \in B'/B'm$ and $a \in \overline{A}$, is injective, then $B'/B'm$ and \overline{A} are linearly disjoint subalgebras of the A/m-algebra B/Bm, and, consequently, so are $A'/A'm$ and A. But $B/Bm \cong (B'/B'm) \otimes_{B'} B$, and it has been noted already that $B'/B'm$ is a direct product of the fields B'/\mathfrak{m}', \mathfrak{m}' ranging over the set of maximal ideals of B' which contract to m. Therefore, letting \mathfrak{m}_0 be any given maximal ideal of B' which lies over m, it is sufficient to prove that the canonical homomorphism π of $(B'/\mathfrak{m}_0) \otimes_{A/m} \overline{A}$ into $B/B\mathfrak{m}_0 \cong (B'/\mathfrak{m}_0) \otimes_{B'} B$, which maps $b \otimes a$ onto ba for $b \in B'/\mathfrak{m}_0$ and $a \in \overline{A}$, is injective. Since B'/\mathfrak{m}_0 is a normal, separable field extension of A/m with Galois group $H^Z(\mathfrak{m}_0)/HT(\mathfrak{m}_0)$, there exist a positive integer n and elements x_i, y_i of B'/\mathfrak{m}_0, $1 \leq i \leq n$, such that $\sum_{i=1}^n x_i \cdotp \rho(y_i) = \delta_{1,\rho}$ for all $\rho \in H^Z(\mathfrak{m}_0)/HT(\mathfrak{m}_0)$ by [5, Theorem 1.3]. Letting $\tau \in H^Z(\mathfrak{m}_0)$ and letting σ be an element of G which extends τ, σ induces an A-algebra automorphism on the image of π, and in this way $H^Z(\mathfrak{m}_0)$ is represented as a group of automorphisms of the image of π. Moreover, $H^T(\mathfrak{m}_0)$ is the kernel of this representation, and thus $H^Z(\mathfrak{m}_0)/HT(\mathfrak{m}_0)$ is represented as a group of \overline{A}-algebra automorphisms of the image of π. For any element c of the image of π, let $tr(c)$ be the sum of the elements $\rho(c)$, $\rho \in H^Z(\mathfrak{m}_0)/HT(\mathfrak{m}_0)$, and notice that, if $c \in B'/\mathfrak{m}_0$, then $tr(c) \in A/m$. If $b \in B'/\mathfrak{m}_0$ and $a \in \overline{A}$, then

$$b \otimes a = \sum_{i=1}^n x_i \cdot tr(y_i \cdotp b) \otimes a = \sum_{i=1}^n x_i \otimes tr(y_i \cdotp ba) \quad \text{in} \quad (B'/\mathfrak{m}_0) \otimes_{A/m} \overline{A};$$

and from this formula it follows easily that π is injective.

Theorem. There exists an unramified A-subalgebra of B which is stable under G and contains every unramified A-subalgebra of B.

Proof. Let \mathfrak{p} be any prime ideal of A, and let A' be an unramified A-subalgebra of B. Then $A_{\mathfrak{p}}$ is the subring of G-invariant elements of $B_{\mathfrak{p}}$ by [3, Chapter V, §1, Proposition 23], $\mathfrak{p} A_{\mathfrak{p}}$ is a maximal ideal of $A_{\mathfrak{p}}$, and $A'_{\mathfrak{p}} / \mathfrak{p} A'_{\mathfrak{p}}$ is a separable $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$-algebra. Therefore, the inclusion map of $A'_{\mathfrak{p}}$ into $B_{\mathfrak{p}}$ induces a monomorphism by which $A'_{\mathfrak{p}} / \mathfrak{p} A'_{\mathfrak{p}}$ may be identified with a subalgebra of $B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}$ and the dimension of $A'_{\mathfrak{p}} / \mathfrak{p} A'_{\mathfrak{p}}$ over $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$ does not exceed the order of G by the preceding lemma. Partially order the unramified A-subalgebras of B by inclusion, let \mathcal{F} be a chain of unramified A-subalgebras of B, and let $\overline{A} = \bigcup_{A' \in \mathcal{F}} A'$. Choose an element A' of \mathcal{F} for which the dimension of $A'_{\mathfrak{p}} / \mathfrak{p} A'_{\mathfrak{p}}$ over $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$
is greatest. If B' is an element of \mathcal{F} such that $A' \subseteq B'$, then the dimensions of the $A_p / \mathfrak{p}A_p$-algebras $A'_p / \mathfrak{p}A'_p$ and $B'_p / \mathfrak{p}B'_p$ must be equal, and therefore $A'_p / \mathfrak{p}A'_p = B'_p / \mathfrak{p}B'_p$. Consequently, $\bar{A}_p / \mathfrak{p}\bar{A}_p = A'_p / \mathfrak{p}A'_p$, and so $\bar{A}_p / \mathfrak{p}\bar{A}_p$ is a separable $A_p / \mathfrak{p}A_p$-algebra. Thus \bar{A} is an unramified A-subalgebra of B, and certainly it is an upper bound for \mathcal{F}. By Zorn's lemma, there exists a maximal unramified A-subalgebra C of B. If A' is any unramified A-subalgebra of B, then $(A'C)_p / \mathfrak{p}(A'C)_p$, which is a homomorphic image of the tensor product of the $A_p / \mathfrak{p}A_p$-algebras $A'_p / \mathfrak{p}A'_p$ and $C_p / \mathfrak{p}C_p$, is a separable algebra over $A_p / \mathfrak{p}A_p$ for any prime ideal \mathfrak{p} of A, and consequently $A'C$ is an unramified A-subalgebra of B which contains C. Therefore, $A'C = C$ and $A' \subseteq C$. If $\sigma \in G$, then $\sigma(C)$ is again an unramified A-algebra, and so $\sigma(C) \subseteq C$. Therefore, C is stable under G.

REFERENCES

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306