Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hyperbolic integrodifferential equations

Author: Paul L. Davis
Journal: Proc. Amer. Math. Soc. 47 (1975), 155-160
MathSciNet review: 0352718
Full-text PDF

Abstract | References | Additional Information

Abstract: Hyperbolic integrodifferential equations are defined and conditions sufficient for hyperbolicity are given. The theory includes that of constant coefficient hyperbolic partial differential equations. Other examples are given.

References [Enhancements On Off] (What's this?)

  • [1] Gustav Doetsch, Theorie und Anwendung der Laplace-Transformation, Dover Publication, N. Y., 1943 (German). MR 0009225
  • [2] I. M. Gel'fand and G. E. Šilov, Generalized functions. Vol. 2: Spaces of fundamental functions, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1968. MR 21 #5l42a; 37 #5693.
  • [3] M. E. Gurtin and Eli Sternberg, On the linear theory of viscoelasticity, Arch. Rational Mech. Anal. 11 (1962), 291–356. MR 0147047,
  • [4] Reuben Hersh, How to classify differential polynomials, Amer. Math. Monthly 80 (1973), 641–654. MR 0316875,
  • [5] L. Hörmander, Linear partial differential operators, Die Grundlehren der Math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [6] Wilbur R. LePage, Complex variables and the Laplace transform for engineers, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1961. MR 0117514
  • [7] V. Volterra, Les fonctions de lignes, Gauthier-Villars, Paris, 1913.

Additional Information

Keywords: Hyperbolic, integrodifferential equation, signal speed
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society