Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalized Shilov boundary and analytic structure


Author: Richard F. Basener
Journal: Proc. Amer. Math. Soc. 47 (1975), 98-104
DOI: https://doi.org/10.1090/S0002-9939-1975-0352990-9
MathSciNet review: 0352990
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A generalization of the concept of the Shilov boundary of a uniform algebra is introduced. This makes it possible to formulate and prove several-dimensional analogues of certain well-known results which guarantee the existence of one-dimensional analytic structure when a function in the algebra is finite-to-one over a suitable part of its spectrum.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Basener, A condition for analytic structure, Proc. Amer. Math. Soc. 36 (1972), 156-160. MR 46 #7903. MR 0308789 (46:7903)
  • [2] E. Bishop, Holomorphic completions, analytic continuation, and the interpolation of semi-norms, Ann. of Math. (2) 78 (1963), 468-500. MR 27 #4958. MR 0155016 (27:4958)
  • [3] A. M. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125-132. MR 28 #2458. MR 0159241 (28:2458)
  • [4] H. Grauert and R. Remmert, Komplexe Räume, Math. Ann. 136 (1958), 245-318. MR 21 #2063. MR 0103285 (21:2063)
  • [5] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927. MR 0180696 (31:4927)
  • [6] E. L. Stout, The theory of uniform algebras, Bogden & Quigley, Tarrytown-on-Hudson, N. Y., 1971. MR 0423083 (54:11066)
  • [7] J. Wermer, Banach algebras and several complex variables, Markham, Chicago, Ill., 1971. MR 46 #672. MR 0301514 (46:672)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0352990-9
Keywords: Analyticity, maximal ideal space, Shilov boundary
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society