GENERALIZED FLAG MANIFOLDS
BOUND EQUIVARIANTLY

HARSH V. PITTIE

ABSTRACT. Given a compact, connected lie group G and a maximal
torus T, we give a simple, explicit construction of a G-manifold M which
bounds the homogeneous space G/T equivariantly.

Let G be a compact, connected lie group with a maximal
torus T. We
will construct a compact manifold M with a G-action, and a G-equivariant
imbedding $G/T \to M$ which identifies G/T with the boundary of M. It is
known [1] that the Pontryagin and Stiefel-Whitney classes of G/T vanish, so
certainly the corresponding characteristic numbers; and hence by general
results of cobordism theory, G/T bounds. However, this result about the
characteristic classes requires a detailed study of the cohomology of G/T.
In any case, the deduction from cobordism theory does not provide any
"simple" explicit manifold bounding G/T, let alone equivariantly.

We start with the well-known decomposition for the lie algebra \mathfrak{g} of G,
as an oriented $\text{ad}(T)$-module: $\mathfrak{g} = \mathfrak{t} \oplus \sum_{\alpha > 0} \mathfrak{g}_\alpha$, where \mathfrak{t} is the lie algebra
of T and \mathfrak{g}_α are irreducible, oriented $\text{ad}(T)$-planes corresponding to the
(positive) roots $\alpha : \mathfrak{t} \to \mathbb{R}$. The subspace \mathfrak{c}_α generated by \mathfrak{t} and \mathfrak{g}_α is
actually a lie subalgebra [2, Chapter 6] isomorphic to $\alpha \oplus \mathfrak{su}(2)$, where
$\alpha = \text{Ker}(\alpha)$ is an abelian ideal, and $\mathfrak{su}(2)$ is generated by the coroot $H_\alpha \in \mathfrak{t}$
and \mathfrak{g}_α. Denoting by $C_\alpha \subseteq G$ the connected subgroup corresponding to \mathfrak{c}_α,
it is easy to see that $C_\alpha / T \cong S^2$, the two-sphere. Here is a quick proof:
C_α / T is a compact two-manifold, and since any compact lie group modulo
its maximal torus is simply-connected, it must be S^2. Note that S^2 acquires
a natural orientation from \mathfrak{g}_α.

Now consider the homogeneous fibre-bundle $C_\alpha / T \to G/T \to G/C_\alpha$.
This exhibits G/T as $G \times C_\alpha(S^2)$ as a G-space, with G acting on the latter
space by left multiplication in the first factor. Our main observation is that

Received by the editors January 3, 1974.

Key words and phrases. Compact lie group, maximal torus, cobordism.

1Serre [2] only discusses the semisimple case, but since \mathfrak{g} is reductive, the
same argument applies.
the C_α-action on S^2 is equivalent to one through $SO(3)$, hence extends to a C_α-action on the three-disk D^3. This can be seen directly, if one writes out the isomorphism $C_\alpha/T \simeq S^2$ using the lie theory above. For our purposes, we can invoke "uniformization" since C_α preserves some complex structure [1, §12]—or equivalently, some Riemannian metric—on S^2. Therefore we construct the manifold $M = G \times C_\alpha(D^3)$, with G acting on M by left multiplication in the first factor. The obvious inclusion $G \times C_\alpha(S^2) \to G \times C_\alpha(D^3)$ then gives the required imbedding.

In a word, we have "filled in" the two-spheres in the fibre-bundle above. Note that there is a G-equivariant fibre-map $\pi: M \to G/C_\alpha$ with fibre D^3, and our homogeneous bundle above is the "boundary-bundle" of $D^3 \to M \to G/C_\alpha$.

BIBLIOGRAPHY

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012