OMITTING TYPES: APPLICATION TO DESCRIPTIVE SET THEORY

RICHARD MANSFIELD

ABSTRACT. The omitting types theorem of infinitary logic is used to prove that every small Π^1_1 set of analysis or any small Σ^1_1 set of set theory is constructible.

In what follows we could use either the omitting types theorem for infinitary logic or the same theorem for what Grilliot [2] calls (eA)-logic. I find the latter more appealing. Suppose \mathcal{L} is a finitary logical language containing the symbols of set theory as well as a constant symbol a for each a in the transitive set A. For this language we will use only (eA)-models, that is to say, end extensions of the model (A,ϵ). Corresponding to this restricted notion of model is a strengthened notion of proof, (eA)-logic. In addition to the usual finitary rules of proof, this logic contains rules R_a for each $a \in A$. Rule R_a says "From $\phi(b)$ for each $b \in a$, you may conclude $\forall x \in \mathcal{A}\phi(x)$." This logic satisfies both the completeness and omitting types theorems. If A is admissible and T is Σ on A, the predicate $T_{eA}\phi$ is also Σ on A. Proofs follow easily from the corresponding theorems of infinitary logic.

A Π^1_1 set is small if it has no perfect subsets. Using the theorem that every set Σ^1_1 in the parameter a having a member not hyperarithmetic in a has a perfect subset, a number of people have observed that every small Π^1_1 set is contained in the set S defined as follows: $a \in S$ iff a is hyperarithmetic in every β with $\omega_1^\alpha \leq \omega_1^\beta$. Here ω_1^α is the first ordinal not recursive in a. It has also been observed that $S = Q$, where Q is the set of α which are constructible by stage ω_1^α in the constructible hierarchy. Since $Q \subseteq L$, in order to prove that no small Π^1_1 set has a nonconstructible element, 2

Received by the editors June 15, 1973.

Key words and phrases. Constructible, perfect set, hyperarithmetic, analytic.

1 These include Kechris, Sachs, and Guaspari. Guaspari claims the record of 7 different characterizations of S.

2 This theorem was first proven in [4] and [5]. The above-quoted strengthening of the theorem to $S=Q$ has previously been proven using essentially the same forcing techniques as the original theorem.

Copyright © 1975, American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
it suffices to show half of this equality, namely $S \subseteq Q$.

Theorem 1. $S \subseteq Q$.

Proof. Let α be an arbitrary set of integers and let σ be ω_1^α. Consider the language for $(\omega \sigma)$-logic which contains an additional unary predicate letter F. Let T be the ZF set theory augmented by the axioms "$F \subseteq \omega$" and each instance of "$\tau < \omega^F$, for $\tau < \sigma$. The type D is $\{x \subseteq \omega \cup \{n \in x: n \in \alpha \cup \{n \notin x: n \notin \alpha\}\}$. Since T has an $(\omega \sigma)$-model, either D is principal in $(\omega \sigma)$-logic or T has an $(\omega \sigma)$-model omitting D.

In the first case let $\phi(x)$ be a generator of D. Then $\alpha = \{n : T \vDash \epsilon \sigma \phi(x) \rightarrow \neg n \in x\}$ and $\sim \alpha = \{n : T \vDash \epsilon \sigma \phi(x) \rightarrow \neg n \in x\}$, thus $\alpha \in \Delta$ on the admissible set $L(\sigma)$ and hence is in $L(\sigma)$; thus $\alpha \in Q$.

In the second case there is an $(\omega \sigma)$-model for T not containing α. Letting β be the interpretation of F in that model, we see that $\omega_1^\alpha \subseteq \omega_1^\beta$, but α is not hyperarithmetic in β. Thus $\alpha \notin S$. □

Definition. For x and y hereditarily countable sets, x is hyperarithmetic in y if $x \in A$ for every admissible A with $y \in A$. Note that for x and y sets of integers, this definition is equivalent to the other usual ones.

Lemma. If α is a countable ordinal and $A \subseteq \sigma$ is not hyperarithmetic in σ, then there is a well ordering of integers $<$ of type σ with A not hyperarithmetic in $<$. \[\text{Proof.}\] We use $(\sigma + 1)$ logic. Let ℓ be the language for that logic augmented by the binary relation symbol $<$. T is ZF set theory augmented by "$<$ is a well ordering of integers of type σ". The type D is $\{x \subseteq \ell \cup \{\rho \in x: \rho \in A \cup \{\rho \notin x: \rho \notin A\}\}$. As in the previous proof, if D were principal, A would be hyperarithmetic in σ. Thus D is not principal and so T has an $(\sigma + 1)$-model not containing A. Since the well-founded part of any model of ZF is admissible, this completes the proof. □

Definition. A set $A \subseteq P(\rho)$ (the power set of ρ) is analytic in σ if there is a formula ϕ of set theory with A defined by the condition: "There is a transitive set a of rank $\leq \sigma$ with $x \in a$ and $(a, \epsilon) \vDash \phi(x)$.''

Theorem 2. If $A \subseteq P\sigma$ is analytic and has an element not hyperarithmetic in σ, then A has 2^{\aleph_0} elements.

Proof. Suppose $x \in A$ is not hyperarithmetic in σ. Let $<$ be a well ordering of integers of type σ, with x not hyperarithmetic in $<$. This ordering obviously induces a simple map from σ 1-1 onto ω, and hence a functional F recursive in $<$ mapping $P\sigma$ 1-1 onto $P\sigma$. Clearly $F(x)$ is not
hyperarithmetic in , so it remains to show that \(\{ F(y) : y \in A \} \) is \(\Sigma^1_1 \) in .

The theorem would then follow directly from the corresponding theorem for \(\Sigma^1_1 \) sets quoted in the second paragraph. \(\{ F(y) : y \in A \} \) can be defined as the set of \(z \) satisfying "there is a binary relation \(R \) on the integers which can be mapped into \(< \) and an integer \(n \) such that \(z \) is the image under \(F \) of the transitive collapse of \(n \) and \(\langle \omega, R \rangle \models \phi(n) \)." This condition can be routinely shown to be \(\Sigma^1_1 \).

Theorem 3. Suppose \(A \) is \(\Sigma \) on \(HC \) (the set of hereditarily countable sets) and has a nonconstructible element, then \(A \) has \(2^{\aleph_0} \) elements.

Proof. We may as well assume that \(A \) is transitive, since its transitive closure is also \(\Sigma \) on \(HC \), and \(\text{mod} \aleph_0 \) has the same cardinal as \(A \). Let \(F \) be the usual \(\Sigma \) isomorphism of \(L_\omega \) onto \(\omega_1 \). For the same reason as above, we may as well assume that for \(x \in A \), \(\{ F(y) : y \in x \} \) is also in \(A \). By these two assumptions \(A \) contains a nonconstructible set of ordinals. Let \(\sigma \) be a countable ordinal and \(x_0 \) be an element of \((A - L) \cap \text{Po} \). Let \(\rho \geq \sigma \) be such that \(V_\rho \models \phi(x_0) \), where \(\phi \) is the \(\Sigma \) definition of \(A \). Then the set of \(y \subseteq \sigma \) satisfying "there is a transitive set \(a \) with rank \((a) \leq \rho \) and \(y \in a \) and \(\langle a, e \rangle \models \phi(y) \)" is a subset of \(A \), analytic in \(\rho \), containing the nonconstructible element \(x_0 \). Since \(x_0 \) is not hyperarithmetic in any ordinal, this, with Theorem 2, completes the proof.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802