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STRUCTURE DIAGRAMS FOR PRIMITIVE

BOOLEAN ALGEBRAS

JAMES WILLIAMS1

ABSTRACT.   If S   and   T  are structure diagrams for primitive Boolean

algebras, call a homomorphism / from S  onto   T right-strong  iff when-

ever x T f(t), there is an s   such that f(s) = x  and  s S I; let  RSE  de-

note the category of diagrams and onto right-strong homomorphisms.

The relation  "S  structures  8" between diagrams and Boolean algebras

induces a 1-1 correspondence between the components of  RSE   and the

isomorphism types of primitive Boolean algebras.  Up to isomorphism,

each component of  RSE   contains a unique minimal diagram and a unique

maximal tree diagram.  The minimal diagrams are like those given in a

construction by William Hanf.  The construction which is given for pro-

ducing maximal tree diagrams is recursive; as a result, every diagram

S structures a Boolean algebra recursive in 5.

1.   Right-strong epimorphisms.  We shall use the following notation for

binary relations: If  P, Q  ate relations, then   PQ = \(x, z)|3 y: x P y  and

y Q z\; domP = ix|3y: % P y\ \P\ = {x|dy: xP y  or y P x\; P"= {(y, x)\

x P y\; if P is a function, then  P(x) = y  iff x P y; in any case  P[y] -

\x\x P y\.   While this last condition is perhaps unconventional, it is at

least compatible with the notation for Boolean algebras: "-[a] = \b £ \v-\\b <

a\.

A Boolean algebra S3  is pseudo-indecomposable iff whenever S3 =

Six S, either 53SS?I or  Bs£.  A set  A Ç |B|   dis jointly generates  53  iff

each  b £ |S3|   is the sum of a pairwise disjoint finite subset of A.   33  is

primitive iff 53  is pseudo-indecomposable and is disjointly generated by the

set of all  b £ S3  such that  53[&]  is pseudo-indecomposable.

William Hanf has introduced a notion of "structuring" for primitive

Boolean algebras in Definition 4.1 and Lemma 4.3 of [l] which we include

here with minor changes for the convenience of the present discussion:
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Definition.  Suppose S is a countable binary relation, 53 is a Boolean

algebra, and F  is a relation whose domain is   \S\, then S structures  53

with F iff

(1) The range of F disjointly generates S3  and contains 1 but not 0.

(2) If a < b, s F a, and t F b, then s S t or s = t.

(3) If a + b < c and a, b, c £ F "[s], then s S s.

(4') lf a + b = c, then F[a]uF[b] 2 F[d

(5 ) If s S t and t F c, then for some a, b £ |53|, s F a, t F b, and

a + b = c.

Definition 1.   Like Hanf, we will call a countable transitive relation

with a largest element a diagram.   A diagram homomorphism f: S—»T  is a

function such that x S y implies f(x) T f(y); f is a right-strong homomor-

phism iff whenever x T f(t), there is an s  such that s S t and f(s) = x.

The class of onto right-strong homomorphisms is closed under composition,

so we may let RSE be the category of diagrams and onto right-strong homo-

morphisms.

I am indebted to the referee for pointing out the interesting work of

R. S. Pierce [2]. His category <2, as given in Definitions 8.3 and 8.7, is

similar to RSE. In particular, the category of finite diagrams and right-

strong homomorphisms is essentially the category of all finite Q.O. sys-

tems which have smallest elements. For each finite diagram S, let <s =

j(y, x)\x S y or x = y\, and let Ps = \x 6 |S| \x S x\. Then the map S h-»

(|S|><ç ,  P s) induces the indicated isomorphism, as is easily checked.

Lemma 2. Suppose g: S—*T is an RSE map and S structures 53 with

F, then  T structures  53  with g"F'.

Proof.   We need to show g"F  satisfies conditions  (1)—(5 ).  Conditions

(1), (2), and (4 ) are straightforward.  For (3), suppose that a, b, c £ F"g[s]

and a + b < c.   Pick u, v, w £ \S\ so that s g"u F, s g ~v F b, and s g~w

F c.   By (2) and the fact that a, b < c, we have u S w or u = w, and v S w

or v = w.  If u S w or v S w, then s T s  since s = g(u) = g(v) = g(w).  On

the other hand, if  u = v = w, then  a,  b, c £ F"[u]  and by (3), u S u, and thus

s T s.   For (5*), suppose that s T t and t g"F c; choose v £ \S\   so that

t g" v F c. Since g is right-strong, we can also choose u £ \S\  so that

g(u) = s  and u S v.   Then for some a, b £ |53|, u F a, v F b, and a + b = c,

by (5 ) applied to  S; and, of course, s g"F a and  t g"F b.  D

Although the converse of the above lemma is false, the following lem-

ma is in the same spirit, and leads to an alternate proof of the fact that

every diagram structures a Boolean algebra (see Hanfs Theorem 7.2).
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Definition 3.  If S is a diagram, let 5+= Su\(x, x)\x £ \S\\, and let

SI(S), the ideal algebra on  S, be the Boolean algebra of sets generated by

{S [x]\x £ \S\\.   S is an irreflexive tree diagram  iff \/x £ \S\, not  x S x, and

Vx, y, z £ \S\, (x S y  and x S z) imply  (y S+ z or z S+ y).

Definition 4.  An RSE map g: S—>T has large collapse iff Vx e |S|,

no finite nonempty antichain A   in S[x] is maximal in S[x] !~)g[g"[A]].

Lemma 5.  Suppose g: S—*T has large collapse and S is an irreflexive

tree diagram, then  T with g"h" structures  SI(s), where Vx £ \S\,\/y  , • ■ ■ ,

yn £S[x], h(S+lx]-(S+[yi]u... us+[yj)) = x.

Proof.  It is easy to verify that S with h" satisfies conditions (1)—(4 );

thus so does  T with g"h", as in the previous lemma.  For (5 ), suppose

s T t and t g~h~c; then for some y,,•••, y    £ S[h(c)],

c = S+[h(c)] - (S+[y¡] y ... g S+[yn]).

We may assume further that \y.,•••, y \ is an antichain since 5 is tree

ordered. We wish to choose u so that u S h(c), g(u) = s, and u is not S-

related to any y .:

c-> h( c)-» t

n4s)  |

5+[u]-T

8

\
-*  U ■

Let A be the set of y.'s for which s T   g(y.). If A is empty, we can

choose  u so that  u S h(c), g(u) = s, and no  y.  is below u, since S  is a

tree diagram and g[s]oS[A(c)]  is infinite by the strong collapse property.

Such a point u will not lie below any y.  either, since otherwise u S y.

implies  s T    g(y).  If A   is not empty, it can be extended to an infinite

antichain  A' Ç S[k(c)](~\g[g~[A]], by strong collapse. Since 5 is a tree we

can choose v £ A' - A  so that no y.  belongs to S[v],   v is not below any

v. either, for suppose  v S   y.: because v £ A , there is some y. £ A  such

that g(v) = g(y.), so that g(y .) T+ g(y{). Since v. £ A, s T   g(y.), and thus

s T+ g(y.), so that y. £ A; but v is not 5-related to any element of A, a

contradiction.  Either s = g(v) ot s T g(v) by choice of v.  If s T g(v),

pick u so that g(u) = s and u S v; if s = g(v), let u = v.   Then since S

is a tree, u is not S-related to any y.  either, and u S   v S h(c).  From this

it is clear that c = (c - S+Uj) + S+[a], and of course g(h(S+[u])) = g(u) = s,

and g(/)(c - S+[u])) = g(Mc)) = í. D

Construction 6.   Every diagram S  is the range of an RSE map ¡i:

MT(S)—>S with large collapse, where MT(S)  is an irreflexive tree diagram,

and p and MT(S) are recursive in S.
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Proof.  Let  S be a diagram.  Let  R  be the irreflexive diagram given by

|R| = |(x, ;' )|x S x, j £oj\li\(x, 0 )|   not  x S x\, and ( x, j ) R { y, k ) iff

(x S y and not y S x)  ot (x S y  and y S x and k < j).  Let p,: R—'S be

the first coordinate projection.   Then  R  is irreflexive, and pl  is right-

strong.  Let  |2| ={(lR,0)}u(|R| -{lRj)x<a and let ( x, f ) Q < y, k )

iff x Q y; let p 2- Q—*R  be the first coordinate projection.  Then p2  is

right-strong and has large collapse.  Finally, let   |MT(S)|   be the set of all

finite  2-chains with largest element  1; demand of MT(S)  only that when-

ever ( Xj, ■ • • , x ., • . • , 1 ) is a  Q-chain, we have  ( x¡, • • • , 1 ) MT(S)

( x., . . . , l).  Let py MT(S)—>Q  be given by pAxl,-.. , 1) a *j.  Then

MT(S) has the prescribed properties, and p,  is right-strong.  Let f¿ =

P\P2pv tne IarSe collapse condition carries over from p2 to p.  Finally, it

is clear from the construction that p and MT(S) ate recursive in S.  o

Corollary 7.  If S structures a Boolean algebra 53, then    S structures

53 with f " for some function f.

Proof.  S  structures &(MT(S))  with p"h, where  h  and p are as above;

by Hanfs Theorem 4.5, 53 ̂ ll(MT(S)). a

Corollary 8.   Every diagram  S structures a Boolean algebra recursively

definable in S.

Proof.  It suffices to construct an algebra isomorphic with  SI(MT(5))

that is recursive in MT(S).  Let B be the set of all pairs (a, A), where

A is a finite antichain in MT(S)[al   Then   Vc £ h[MT(S)], 3 ! ( a, A }eB:

c = MT(S)\\a] ~ \J{MT(S)+[x]\x £ A\.  Let  |53|  be the set of all finite sub-

sets |( a p A j ),..., ( a , A    > j of B  such that if for some i, j, a. MT(S)

a.; then for some b £ A ., a. MT(S) b.  Each element of SI(MT(5')) is uniquely

represented as the disjoint sum of elements of h[MT(S)], and thus is

uniquely represented by an element of  |53|.  The recursiveness in  MT(S)

of the Boolean operations on S3  is now straightforward.  To compute the

join operation, for example, first define the meet of two finite antichains

A, B, by AAB = \x £ A \jB\x £ A HB  or   3yeAuB, xMT(S)y j.   Then to

find the join of a finite subset  \(a v A.) ,..., ( fl^, A^ )[ of ñ, just re-

place each pair ( a ., A . ) and   (a ., A . )  with  ( a ., A¿ A A .  ) whenever

aMT(S) a. and V& £ A ., not a MT(S)b.   Finally, the join of two elements

from 53  is the join of their union.  O

2. Minimal and maximal diagrams.  Consider RSE to be preordered by

the relation Q < R iff there is an RSE map from R to Q.  The RSE
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minimal diagrams turn out to be just those of the type 5(53)  given in Hanfs

Construction 5.3, which for convenience, we restate as follows: Suppose  53

is a primitive Boolean algebra.  Let  P/(53) = {b £ |53| |S3[è]  is pseudo-inde-

composable!. Va eP/(53), let Aa) = iè|S3[è]s53[a]S.  Let  |5(53)| = {r(a)\a £

P/(53)|, and Va, b £ P/(S), let  Áa) 5(53) r(b) iff S[fl] x S[i]»B[è].  The

following result is analogous to Pierce's Lemma 9.1.

Theorem 9.  // a diagram   R  structures a Boolean algebra  53, then there

is a unique RSE map n from  R  to 5(53).

Proof.  Assume  R   structures   S3  with  F.  We shall show that  n = Ft is

the required  RSE map from  R  to  5(33).

Step I.  -n -Ft is well defined: Suppose  s F a  and s F b; then by Hanfs

Lemma 4.4, 53[aJ>53[>].   By the proof of Hanfs Theorem 5.2, a, b £ P/(53),

and thus  r(a) = r(b).

Step II.  n is onto; that is, if  b £ P/(S3), then   3 ¿V e P/(53), 3s £ \R\,

s F b    and  r(b) = r(b ): By condition (1) of the structure definition, b =

b. + . .. + b    with  b .,••., b     in the range of F, and for some  b ., 53[è] =
1 n i n ° ' z

S3[è.]  since  53[è]  is pseudo-indecomposable.

Step III.  n is a homomorphism; that is, if s R t, then for some  a, b £

\% s F a, t F b, and 53[a] x S3[è] = 5301   Pick c so that / F c.   Then by

condition (5 ) of the structure definition, we can choose  a, b  so that

s F a, t F b, and a + b = c; then by Hanfs Lemma 4.4,

8.0] a 53[c] = B[a +&]« B[o] x Btfcl.

5zep IV.  77 is right-strong: Suppose  77(5) 5(53) 77(f).   Then we may choose

a, b  so that s F a and r F è; in which case r(a) = 77(s) 5(53) 77(r) = Ab), so

that  3j[a] x S3[è] = f>[b].   Hence we may write  b = al + bv where  r(a x) =

r(a) and Ab x) = Ab).   By condition (1) of the structure definition we may

write a, = a, + c and b ^ = b 2 + d, where  Aa¡) = Köj)) H&j) = Ab2), and

a2, b2 are in the range of  F.   Choose  s , t    so that s   F a2  and  í   F b2;

then 77(s') = Ka) = 7t(s) and n(t') = A"b) = rAt).   Since b > a2 + b2, we have

(s' R t ot s' = t) and (/' R t  or /' = r) by condition (2) of the structure

definition.  If s' R t, we are done; suppose  s   = t.   If t   = t, then since

b > a2 + b2, we have  s   = t R t  by condition (3).  If t   R t , however, set

b2 = b, + a,, with  AbS) = Ab2) = Kè) and  AaJ = Aa); as before, set fl? =

a, + a,, with Kfl,) = Aa^), and a4 in the range of F.   Pick s    so that

s" F a,.  Then by condition (2), s   R t    ot s   = t , since  a4 < ¿>2.   In

either case  s" P t, and  77(5") = K<z4) = Aa) = tAs).
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Step V.  77   is unique:   First, 77 = Ft is independent of F; that is, if R

structures  S3 with  F  and with  G, then  Ft = Gt:  Suppose  s F a and s G b;

then by Hanfs Lemma 4.4, 53[a] St 33[è], and thus Aa) = Ab).  Next, if 5(33)

structures  53  with H, then  H C f: 5(53)  structures  S3  with  t", as is shown

in the proof of Hanfs Theorem 5.4. Also, Ht is independent of H, by what

we have just seen (in the special case where R = 5(53)). Hence Ht = t"t.

But  t"t is the identity map on  5(53), and thus H C r".   Finally, if g  is an

RSE map from R  to  5(33), then g = 77: By Lemma 2, 5(53)  with g~F  struc-

tures  53.  Hence g~F C r ", in which case  F"g C r, and thus g Ç F F~g C

Fr = 77.   But g and 77 are functions with the same domain; so g = 77.  □

Corollary 10.  The RSE minimal diagrams are just those of the type

given in Hanfs Construction 5.3.  They are essentially the irreducible

simple  P.O. systems of Pierce.

Proof.  For the first statement, suppose that /: 5(53)—>R  is an  P.5F

map.  Then R  structures  53  by Lemma 2 and Hanf s Theorem 5.4.  Hence,

we need only let  77: P.—'5(53)  be the unique map given above. Notice that

fir, being the unique   RSE  map from 5(53)  to. 5(33), is the identity; conse-

quently, since / is onto, it is an isomorphism.  The second statement now

follows from the definitions supplied with Pierce's Propositions 8.13 and

8.14, and the fact that every right-strong homomorphism factors through an

RSE map. D

Corollary 11.   The relation "5 structures S3" induces a   1-1 correspon-

dence between the components of RSE and the isomorphism types of

primitive Boolean algebras.

Proof. If 5 and T structure the Boolean algebra 53, then by the above

theorem, both precede 5(33) in RSE. Conversely, suppose /: Q—>R is an

P5F map. If Q structures 53, then so does R by Lemma 2. On the other

hand, if R structures 53, then Q structures U(MT(Q)) by Construction 6,

R structures ll(MT(Q) by Lemma 2, and U(MT(Q)) ^53 by Hanfs Lemma

4.4; hence Q also structures 33. A finite repetition of this argument shows

that if 5 and  T lie in the same component of RSE, they structure the same

Boolean algebras. D6

Lemma 12.  Suppose  R  structures 53, 77: R—»5(53) is the unique RSE

map, x, y £ \R\, and R[x]^ R[y] (or more accurately, R\R[x] = R\R[y]).

Then n(x) = iAy).
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Proof. Vx, y £ \R\, set x ^ y iff R[x] SP[y]. Then the projection

map from R to R/^ is easily seen to be right-strong. Consequently, it

must factor through  77.  □

Theorem 13.   For any primitive Boolean algebra  53, there is (up to

isomorphism) a unique tree diagram  P  that structures  S3  and satisfies the

following equivalent conditions:

(i)  P  is RSE maximal.

(ii) P  is of the type given in Construction 6.

(iii)  P  is irreflexive, and Vx £ \P\, P"[x]  is finite and Vy e P[x],

there exist infinitely many  z £ P[x]  such that P[z]  is a maximal ideal in

P[x]  isomorphic with  P[y].

Proof.  The diagrams discussed will structure  33, unless otherwise in-

dicated.-The first step is to show that if P  is a tree diagram, 5  satisfies

(iii), and /: P—»5  is an  RSE  map, then  P = S: First, P  must be irreflexive

since 5 is. Also, Vx, /|P"[x] must be an embedding, and thus  P"[x] is

finite.  For each s £ |5|, let B(s) be the set of all s' e \S\  such that

5[s ]=5[s], and s  and  s    have the same 5-successor.  For each  x £ \P\,

let A(x) be the set of all x' e |P|   such that 5[/(x)] =5[/(x')] and x and

x   have the same  P-successor.  We can define an isomorphism    g: P—»5

inductively as follows: let g(l) = 1.  Assume that for n> 0, g has been

defined on D^ = \y\(P~[y])= = n\, and that for each y £ Dn, S[g(y)]^S[f(y)].

Extend g  to each x such that (P"[x])= = n  as follows: Suppose y  is the

P-successor of x; then f(x) S f(y).  By (iii) we may choose s     so that

S[sQ] =5[/(x)] and f(y) is the 5-successor of sQ.   By assumption, 5[/(y)] =

5[g(y)] , and thus we may choose  s  so that 5[s]=5[s ]  and g(y)  is the

5-successor of s.  B(s)  is infinite by (iii).   So is B(5-); for each s   e

B(sQ), there is an x' £ P  such that f(x') = s'  and x' P y, since  s' S f(y)

and / is right-strong; furthermore, y is the P-successor of x   since f(y)

is the 5-successor of s'.   Each such x   belongs to A(x); hence A(x) is

infinite.  Extend g  to A(x)  in any way such that g|A(x)  is a 1-1   corre-

spondence onto B(s). In this way g may be extended to the set of all  x

such that (5~[x])= = 72  since both of the families  |A(x)|x e |P|1 and

jß(s)|s e \S\\ ate pairwise disjoint.  The completed map q: P—>5 so ob-

tained will be an isomorphism by construction.

A moment's thought shows that the diagrams given in Construction 6

satisfy (iii); thus (ii)—»(iii).  The above paragraph shows directly that

(iii)—'(i). Suppose P is maximal; then in RSE, P precedes  MT(P)  since

MT(P) precedes P, and thus  PSiMT(P)  since MT(P)  satisfies (iii);
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hence (i)—>(ii).  Finally, uniqueness may be shown as follows: Suppose

2» R  satisfy (iii), let 5 = 5(53), and let 77: Q—»5 and p: R—»5 be the unique

RSE maps.  We may define an isomorphism  q>: Q—»P.  by a back and forth

argument as follows: Since Vx e \Q\, Q~[x] is finite, we may let  {x ]i £ a>\

be an enumeration of  \Q\   such that V x ., Q~[x] C \x \j < i\.   Let  \y \i £ (ú\

be a similar enumeration of   \R\.   Let  <f>Al~) = 1„.  Assume a partial iso-

morphism  cb. from a finite subset of  \Q\  to   \R\  has been defined, that for

each x e dom t/>., d>. maps  Q"[x] onto R [<£.(x)], and that 7r(x) = p(c/> (x)).

To extend <p. to the next element, say x. e |g|  for example, let  x be the

Q-successor of x..   Then  7r(x .) 5 77(x) = p(c/>.(x)), and we may choose y e

|P|   so that y P <p(x) and  p(y) = 77(x.).  Then there are infinitely many

points z £R[<f>.(x)]  such that  <f> .(x)  is the  R-successor of z and  R[y] ~

R[z]; let </J+1(x )  be one such  z  that does not belong to the range of <f>..

Since P[c/>. + ,(x.)] = R[y], p((p. + ,(x.)) = p(y) = tAx), by the above lemma;

0 +,   maps 2~Lx.] onto  R  [<p +1(x.)], and it is clearly a partial isomorphism.

</j, the union of the  <p ' s is the desired isomorphism. □

Pierce's Proposition 10.2 suggests the following analogue for diagrams

and primitive Boolean algebras: Define the product of two diagrams  5, T  by

(s, t) S xT (s', t') iff (s 5+ s'  and t T+ i') and (s S s'  ot t T t').  For

Boolean algebras SI, 33, let SI ©53  denote the coproduct of SI and  53  in the

category of Boolean algebras and homomorphisms that preserve   1.

Proposition 14.  // 5 structures SI and T structures 53, then S x T

structures  ?I©33.

Proof.  Suppose 5  structures  SI with  F  and  T  structures   53 with  G.

We may consider SI © 53  to consist of all formal sums a ,b ,+■•■ + a b
J linn

where V i < i, either a .a . = 0  or  b.b. —0, modulo the usual identities for

Boolean algebras.  It is now a straightforward task to show that 5 x T,

F x G, and SI ©53  satisfy the structure definition, except perhaps for con-

dition (5'): Assume that (s, t) S x T (s1, t') and (s1, t') F x G a"b".   Then

s   S a , t    G b , and (s S s    and  t T    t )  or vice versa.  If s 5 s   and  t =

t , then there are a, a' £ |SI|   such that s F a, s   Fa', and a + a   = a .

But then (s, t) F x G (a, b"), (s1, t1) F x G (a', b"), and ab" + ab" = a"b".

In the other interesting case, if s S s'  and  t T t , then there are a, a   £

|SI|  and b, b' £ |33|  such that s F a, s' F a , t G b, t' G b', a + a' = a

and b + b' = b", so that

ab +a h < ab + .a b + ab + a b = a b   ,
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and (s, t) F xG ab and (s , t ) F x G a'b'; by Hanfs Lemma 4.3, this is good

enough. O

The above result is interesting because it suggests that diagrams

structure Boolean algebras contravariantly (as does the pairing of the em-

bedding 5[s] C 5[l]  with the projection  SI—»SI[a], where  5  structures  21

and 5|5[s]  structures  SI[a]).   As with Pierce's products of  P.O. systems,

the above diagram product has not yet been placed in a correct categorical

framework.  Perhaps there is a product-preserving contravariant functor from

a category containing  RSE  to a suitable category of isomorphism types of

Boolean algebras.
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