Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Nonrealizability of some cyclic complex bordism modules


Author: Raphael S. Zahler
Journal: Proc. Amer. Math. Soc. 47 (1975), 218-222
MSC: Primary 55F45
MathSciNet review: 0362306
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that certain modules over the complex cobordism ring MU* cannot be realized in the sense that none of them can be isomorphic to the MU-cohomology module of a finite complex. Potential applications in stable homotopy theory are discussed.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716
  • [2] -, Stable homotopy and generalized homology, Univ. of Chicago Lecture Notes, 1971.
  • [3] M. Hazewinkel, Constructing formal groups over $ {Z_{(p)}}$-algebras. I, Netherlands School of Economics (preprint).
  • [4] P. S. Landweber, Homological properties of comodules over $ M{U^ \ast }(MU)$ and $ B{P^ \ast }(BP)$, Rutgers University, New Brunswick, N. J. (preprint).
  • [5] Arunas Liulevicius, On the algebra 𝐵𝑃_{∗}(𝐵𝑃), Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Springer, Berlin, 1971, pp. 47–53. Lecture Notes in Math., Vol. 249. MR 0339133
  • [6] Larry Smith, On realizing complex bordism modules. II. Applications to the stable homotopy of spheres, Amer. J. Math. 93 (1971), 226–263. MR 0275430
  • [7] Larry Smith, On realizing complex bordism modules. III, Amer. J. Math. 94 (1972), 875–890. MR 0310916
  • [8] Hirosi Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839–842. MR 0230310
  • [9] Raphael Zahler, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. (2) 96 (1972), 480–504. MR 0319197
  • [10] Raphael Zahler, Detecting stable homotopy with secondary cobordism operations. I, Quart. J. Math. Oxford Ser. (2) 25 (1974), 213–226. MR 0367998

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55F45

Retrieve articles in all journals with MSC: 55F45


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0362306-X
Keywords: Complex bordism module, realizable, BP-cohomology, invariant ideals
Article copyright: © Copyright 1975 American Mathematical Society