Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Nonrealizability of some cyclic complex bordism modules


Author: Raphael S. Zahler
Journal: Proc. Amer. Math. Soc. 47 (1975), 218-222
MSC: Primary 55F45
MathSciNet review: 0362306
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that certain modules over the complex cobordism ring MU* cannot be realized in the sense that none of them can be isomorphic to the MU-cohomology module of a finite complex. Potential applications in stable homotopy theory are discussed.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716 (40 #4943)
  • [2] -, Stable homotopy and generalized homology, Univ. of Chicago Lecture Notes, 1971.
  • [3] M. Hazewinkel, Constructing formal groups over $ {Z_{(p)}}$-algebras. I, Netherlands School of Economics (preprint).
  • [4] P. S. Landweber, Homological properties of comodules over $ M{U^ \ast }(MU)$ and $ B{P^ \ast }(BP)$, Rutgers University, New Brunswick, N. J. (preprint).
  • [5] Arunas Liulevicius, On the algebra 𝐵𝑃_{∗}(𝐵𝑃), Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Springer, Berlin, 1971, pp. 47–53. Lecture Notes in Math., Vol. 249. MR 0339133 (49 #3896)
  • [6] Larry Smith, On realizing complex bordism modules. II. Applications to the stable homotopy of spheres, Amer. J. Math. 93 (1971), 226–263. MR 0275430 (43 #1186b)
  • [7] Larry Smith, On realizing complex bordism modules. III, Amer. J. Math. 94 (1972), 875–890. MR 0310916 (46 #10014)
  • [8] Hirosi Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839–842. MR 0230310 (37 #5872)
  • [9] Raphael Zahler, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. (2) 96 (1972), 480–504. MR 0319197 (47 #7742)
  • [10] Raphael Zahler, Detecting stable homotopy with secondary cobordism operations. I, Quart. J. Math. Oxford Ser. (2) 25 (1974), 213–226. MR 0367998 (51 #4240)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55F45

Retrieve articles in all journals with MSC: 55F45


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0362306-X
PII: S 0002-9939(1975)0362306-X
Keywords: Complex bordism module, realizable, BP-cohomology, invariant ideals
Article copyright: © Copyright 1975 American Mathematical Society