On the -primary obstructions to finding a cross-section

Author:
Robert Rigdon

Journal:
Proc. Amer. Math. Soc. **47** (1975), 243-250

MSC:
Primary 55G40

MathSciNet review:
0362308

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a (weak) fibration, and let be an odd prime. In this paper, we show that the existence of a fiber-preserving map having certain properties implies that the -primary obstructions to a cross-section of vanish. Assuming that has a cross-section, we prove a related theorem which bears on the problem of enumerating the homotopy classes of cross-sections of .

**[1]**J. F. Adams,*Stable homotopy and generalized homology*,Mathematics Lecture Notes, University of Chicago, Chicago, Ill., 1971.**[2]**James C. Becker,*Cohomology and the classification of liftings*, Trans. Amer. Math. Soc.**133**(1968), 447–475. MR**0236924**, 10.1090/S0002-9947-1968-0236924-4**[3]**James C. Becker,*Extensions of cohomology theories*, Illinois J. Math.**14**(1970), 551–584. MR**0273598****[4]**Arthur H. Copeland Jr. and Mark Mahowald,*The odd primary obstructions to finding a section in a 𝑉_{𝑛} bundle are zero*, Proc. Amer. Math. Soc.**19**(1968), 1270–1272. MR**0234463**, 10.1090/S0002-9939-1968-0234463-3**[5]**Albrecht Dold,*Partitions of unity in the theory of fibrations*, Ann. of Math. (2)**78**(1963), 223–255. MR**0155330****[6]**Dale Husemoller,*Fibre bundles*, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR**0229247****[7]**Lawrence L. Larmore,*Twisted cohomology theories and the single obstruction to lifting*, Pacific J. Math.**41**(1972), 755–769. MR**0353315****[8]**Mark Mahowald and Robert Rigdon,*Obstruction theory with coefficients in a spectrum*, Trans. Amer. Math. Soc.**204**(1975), 365–384. MR**0488058**, 10.1090/S0002-9947-1975-0488058-5**[9]**J. F. McClendon,*Higher order twisted cohomology operations*, Invent. Math.**7**(1969), 183–214. MR**0250302****[10]**James F. McClendon,*Obstruction theory in fiber spaces*, Math. Z.**120**(1971), 1–17. MR**0296943****[11]**J. F. McClendon,*Reducing towers of principal fibrations*, Nagoya Math. J.**54**(1974), 149–164. MR**0377884**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55G40

Retrieve articles in all journals with MSC: 55G40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0362308-3

Keywords:
Fiber space,
Stiefel bundle,
cross-section,
obstruction,
Postnikov system

Article copyright:
© Copyright 1975
American Mathematical Society