Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


An application of the separation theorem for hermitian matrices

Author: T. L. Markham
Journal: Proc. Amer. Math. Soc. 47 (1975), 61-64
MSC: Primary 15A18
MathSciNet review: 0364290
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ H$ is an $ n \times n$ hermitian matrix over the complex field partitioned as $ H = \left(\begin{smallmatrix}A&B\\ B*&C\end{smallmatrix}\right)$, where $ C$ is invertible. Using the separation theorem on eigenvalues of hermitian matrices, bounds are obtained for the eigenvalues of $ (H/C) = A - B{C^{ - 1}}{B^ \ast }$ in terms of the eigenvalues of $ H$ and $ C$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A18

Retrieve articles in all journals with MSC: 15A18

Additional Information

PII: S 0002-9939(1975)0364290-1
Keywords: Separation theorem, hermitian matrices, Schur complement, compound matrix, bounds for eigenvalues
Article copyright: © Copyright 1975 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia