An application of the separation theorem for hermitian matrices

Author:
T. L. Markham

Journal:
Proc. Amer. Math. Soc. **47** (1975), 61-64

MSC:
Primary 15A18

DOI:
https://doi.org/10.1090/S0002-9939-1975-0364290-1

MathSciNet review:
0364290

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose is an hermitian matrix over the complex field partitioned as , where is invertible. Using the separation theorem on eigenvalues of hermitian matrices, bounds are obtained for the eigenvalues of in terms of the eigenvalues of and .

**[1]**D. E. Crabtree and E. V. Haynsworth,*An identity for the Schur complement of a matrix*, Proc. Amer. Math. Soc.**22**(1969), 364-366. MR**41**#234. MR**0255573 (41:234)****[2]**E. V. Haynsworth,*Determination of the inertia of a partitioned Hermitian matrix*, Linear Algebra and Appl.**1**(1968), 73-81. MR**36**#6440. MR**0223392 (36:6440)****[3]**Alston A. Householder,*The theory of matrices in numerical analysis*, Blaisdell, New York, 1964, p. 76. MR**30**#5475. MR**0175290 (30:5475)****[4]**M. Marcus and H. Minc,*A survey of matrix theory and matrix inequalities*, Allyn and Bacon, Boston, Mass., 1964. MR**29**#112. MR**0162808 (29:112)****[5]**L. J. Watford, Jr.,*The Schur complement of a generalized -matrix*, Linear Algebra and Appl.**5**(1972), 247-255. MR**46**#9075. MR**0309972 (46:9075)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A18

Retrieve articles in all journals with MSC: 15A18

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0364290-1

Keywords:
Separation theorem,
hermitian matrices,
Schur complement,
compound matrix,
bounds for eigenvalues

Article copyright:
© Copyright 1975
American Mathematical Society