Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The second variation formula for harmonic mappings


Author: R. T. Smith
Journal: Proc. Amer. Math. Soc. 47 (1975), 229-236
MSC: Primary 58E15
DOI: https://doi.org/10.1090/S0002-9939-1975-0375386-2
MathSciNet review: 0375386
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The formula of the title is computed, and is used to calculate the index and nullity in several cases.


References [Enhancements On Off] (What's this?)

  • [BY] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, no. 32, Princeton Univ. Press, Princeton, N. J., 1953. MR 15, 989. MR 0062505 (15:989f)
  • [ES] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 29 #1603. MR 0164306 (29:1603)
  • [E1] H. Eliasson, On the geometry of manifolds of maps, J. Differential Geometry 1 (1967), 169-194. MR 37 #2268. MR 0226681 (37:2268)
  • [E2] -, Variational integrals in fibre bundles, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, R. I., 1970, pp. 67-89. MR 42 #2507.
  • [H] P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967), 673-687. MR 35 #4856. MR 0214004 (35:4856)
  • [HE] R. Hermann, The second variation for variational problems in canonical form, Bull. Amer. Math. Soc. 71 (1965), 145-148. MR 30 #2436. MR 0172216 (30:2436)
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Appl. Math., no. 15, Vol. II, Interscience, New York, 1969. MR 38 #6501. MR 0238225 (38:6501)
  • [L1] A. Lichnérowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III, Dunod, Paris, 1958. MR 23 #A1329.
  • [L2] -, Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 341-402. MR 41 #7598. MR 0262993 (41:7598)
  • [M] J. Milnor, Morse theory, Ann. of Math. Studies, no. 51, Princeton Univ. Press, Princeton, N. J., 1963. MR 29 #634. MR 0163331 (29:634)
  • [N1] T. Nagano, On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers Coll. Gen. Ed. Univ. Tokyo 11 (1961), 177-182. MR 26 #1830. MR 0144283 (26:1830)
  • [N2] -, On conformal transformations of Riemannian spaces, J. Math. Soc. Japan 10 (1958), 76-93. MR 22 #1859. MR 0110991 (22:1859)
  • [P] R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340. MR 28 #1633. MR 0158410 (28:1633)
  • [SMA] S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049-1055. MR 31 #6251. MR 0182027 (31:6251)
  • [SMI] R. T. Smith, Thesis, Warwick University, 1972.
  • [YN] K. Yano and T. Nagano, On geodesic vector fields in a compact orientable Riemannian space, Comment. Math. Helv. 35 (1961), 55-64. MR 23 #A2l64. MR 0124854 (23:A2164)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E15

Retrieve articles in all journals with MSC: 58E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0375386-2
Keywords: Harmonic mapping, energy functional, Morse theory, infinitesimal transformation group
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society