TRIPLES ON REFLECTIVE SUBCATEGORIES
OF FUNCTOR CATEGORIES

DAVID C. NEWELL

ABSTRACT. We show that if S is a cocontinuous triple on a full reflective subcategory of a functor category then the category of S-algebras is again a full reflective subcategory of a functor category.

This note should be considered an addendum to [4], and definitions for all of the terminology and concepts we use can be found there.

We shall also fix V to be a closed bicomplete category and, in this note, all of the category theory is done relative to V.

In [4], we have shown the following:

(I) If C is a small category and T is a cocontinuous triple on the functor category V^C, then there is a small category C' and a functor $f: C \to C'$ so that

(a) T is the triple induced by the adjoint pair $(f^*, f^!): V^{C'} \to V^C$, where $f^*: V^{C'} \to V^C$ is the functor induced by f and $f^!$ is the left adjoint of f^*;

(b) the adjoint pair $(f^*, f^!)$ is tripleable, so that there is an equivalence of categories $V^{C'} \cong (V^C)^T$, where $(V^C)^T$ is the category of T-algebras.

(II) If C is a small category and T is any triple on V^C, there is a unique cocontinuous triple \hat{T} on V^C and a map of triples $\tau: \hat{T} \to T$ so that, if $R: C^\circ \to V^C$ denotes the right Yoneda embedding of C° into the representable functors of V^C, τR is the identity (we shall refer to \hat{T} as the cocontinuous approximation to T).

In this paper, we shall prove the following

1. Theorem. Suppose C is a small category, A is a full reflective subcategory of V^C (i.e. the inclusion functor of A to V^C has a left adjoint) and S is a cocontinuous triple on A. Then there is a small category...
ry C' for which the category of S-algebras A^S is a full reflective subcategory of V^C'.

The basic idea of the proof of this theorem is as follows: as we shall see, S induces a triple T on V^C in an obvious way; we use (II) to construct the cocontinuous approximation \hat{T} of T, and then we apply (I) to \hat{T} to obtain the desired category C'.

The rest of this paper is devoted to showing that the above outline does indeed give a proof for the theorem.

Proof of the theorem. Let A and B be categories and suppose $(i, r): A \to B$ is an adjoint pair from A to B with unit $u: 1_A \to ir$ and counit $e: ri \to 1_A$. We shall let $R = (R, u, m)$ denote the triple on B induced by (i, r) (so that $m = ier$).

Suppose $S = (S, \eta', \mu')$ is a triple on A. Then S, together with (i, r), induces a triple $T = (T, \eta, \mu)$ on B by letting $T = isr$, $\eta = (inr') \cdot u$ and $\mu = (i\mu') \cdot (is er)$. Equivalently, T is the triple induced by the adjoint pair obtained by composing the adjoint pair $(i, r): A \to B$ with the adjoint pair $(U^S, F^S): A^S \to A$, where $U^S: A^S \to A$ is the usual "underlying" functor from the category of S-algebras to A and F^S is the usual "free" functor.

One obtains easily the following facts:

1. the comparison functor $\sim: A^S \to B^T$;
2. there is a map of triples $\theta: R \to T$ given by $\theta = i\eta'r$.

2. Proposition. Suppose A is a full reflective subcategory of B, i.e., the inclusion functor $i: A \to B$ has a left adjoint r, $S = (S, \eta', \mu')$ is a triple on A, and $T = (T, \eta, \mu)$ is the triple on B induced by S and (i, r). Then

(a) the comparison functor $\sim: A^S \to B^T$ of (1) is an equivalence of categories, and

(b) if $R = (R, u, m)$ is the idempotent triple on B induced by the adjoint pair (i, r), then $T = TR = RT$ and the map of triples $\theta: R \to T = RT$ of (2) is given by $\theta = R\eta$. Furthermore, $\mu \cdot \theta T = \mu \cdot T\theta = 1_T$.

Proof. (a) Follows from Beck's tripleability theorem (see [7]). For (b), we have $RT = irisr = iS r = T$, as the counit $e: ri \to 1_A$ is the identity. Similarly $TR = T$. $R\eta = ir(i\eta'r \cdot u) = i\eta'r \cdot iru = i\eta'r$ (as $ri = 1_A$ and $ru = 1_r$) θ. $\mu \cdot \theta T = i\mu'r \cdot is er \cdot i\eta'r isr = i\mu'r \cdot i\eta'Sr$ (as $e = 1$ and $ri = 1_A$) $i(\mu' \cdot \eta'Sr) = i1sr$ (as S is a triple) 1_T. Similarly $\mu \cdot T\theta = 1_T$. □

For the rest of this paper, let us make the following hypotheses.
(i) \(\mathcal{B} \) is cocomplete and there is a small category \(\mathcal{C} \) and a functor \(k: \mathcal{C} \to \mathcal{B} \) which is dense in \(\mathcal{B} \) (see [7]);

(ii) there is an adjoint pair \((i, r): \mathcal{A} \to \mathcal{B} \) whose counit is the identity (so that \(\mathcal{A} \) is equivalent to a full reflective subcategory of \(\mathcal{B} \)) and

\[
(*) \quad \mathcal{R} = (R, u, m) \text{ is the idempotent triple on } \mathcal{B} \text{ induced by } (i, r);
\]

(iii) \(\mathcal{S} = (S, \eta', \mu') \) is a cocontinuous triple on \(\mathcal{A} \) and, for \(\mathcal{T} = (T, \eta, \mu) \), the triple on \(\mathcal{B} \) induced by \(\mathcal{S} \) and \((i, r)\), there is a cocontinuous triple \(\hat{T} = (\hat{T}, \hat{\eta}, \hat{\mu}) \) on \(\mathcal{B} \) and a map of triples \(\tau: \hat{T} \to T \) with \(rk = 1 \).

We note that if \(\mathcal{C} \) is a small category, \(\mathcal{A} \) is a full reflective subcategory of \(\mathcal{V} \), and \(\mathcal{S} \) is a cocontinuous triple on \(\mathcal{A} \) (as in the hypotheses of 1), then \(\mathcal{B} = \mathcal{V} \), \(k \) the right Yoneda embedding \(\mathcal{R}: \mathcal{C} \to \mathcal{V} \), and \(\mathcal{T} \) the cocontinuous approximation of \(\mathcal{T} \) satisfy the above hypotheses (*)).

Recall that for \(X \) a category and for \(\mathcal{R} = (R, u, m) \) and \(\mathcal{T} = (T, \eta, \mu) \) two triples on \(X \), the composite triple of \(\mathcal{R} \) and \(\mathcal{T} \) is a triple \(\mathcal{R}T = (RT, u\eta, v) \) for which \(R\eta: R \to RT \) and \(uT: T \to RT \) are maps of triples and for which \(v \cdot (R\eta uT) = 1_{RT} \).

3. Proposition. Under the hypotheses (*)\(, \mathcal{T} \) is a composite triple of \(\mathcal{R} \) and \(\hat{T} \).

Proof. \(\tau \), being an adjoint, is cocontinuous. Since \(rT = riSr = Sr \) and since \(rr: rT \to rT = Sr \) is a natural transformation between cocontinuous functors for which \(rrk = 1 \), and since \(k \) is assumed dense, it follows that \(rr \) is an isomorphism of functors. Hence \(Rr: RT \to RT = T \) is an isomorphism of functors. Let \(\mathcal{RT} \) be \(R\hat{T} \) with the triple structure induced by that of \(T \) via the isomorphism \(R\tau \). Since \(\hat{\eta} : \tau = \eta \), one has \((R\tau) \cdot (u\hat{\eta}) = u\eta = \eta \) so that \(u\hat{\eta} \) is the unit of \(\mathcal{RT} \).

\(R\hat{\eta}: R \to R\hat{T} \) is a map of triples, since \(R\tau \cdot R\hat{\eta} = R(\tau \cdot \hat{\eta}) = R\eta = \theta \) is a map of triples.

We now show that \(u\hat{T}: \hat{T} \to R\hat{T} \) is a map of triples. Now \((R\tau \cdot \hat{T})k = Rrk \cdot u\hat{T}k = 1 \cdot uTk = uiSr = 1 \) (as \(ui = 1 \) and \(rk = 1 \)). Since \(\hat{T} \) is cocontinuous and \(k \) is dense, \(\hat{T} \) is the left Kan extension of \(\hat{T}k \) along \(k \) (see [7, p. 232]). The universal property of left Kan extensions gives us that \(R\tau \cdot n\hat{T} = \tau \), and since \(\tau \) is a map of triples, so is \(u\hat{T} \).

Finally, if \(v \) is the multiplication of \(R\hat{T} \) (induced by \(\mu \)), we have \([v \cdot (R\hat{T}\mu)] = 1_{\hat{T}} \) since, by \(S2, \mu : \Omega T = 1 \), so that the diagram
4. Corollary. Under the hypotheses (*), A^S is equivalent to a full reflective subcategory of B^T.

Proof. From [2, p. 122] and §3 we have a lifting of R to a triple \bar{R} on B^T and an isomorphism of categories $\Phi: (B^T)\bar{R} \cong B^R$. But $R^T \cong T$ by §3 so that $B^R T \cong B T \cong A^S$ by §2. Since the underlying functor from B^T to B is faithful and R is idempotent, the lifting \bar{R} is idempotent. □

We note that Theorem 1 now follows from this corollary.

A problem arising from this theorem is the following: if C is a small category, A is a full reflective subcategory of V^C, and S a cocontinuous triple on A, then is A^S a full reflective subcategory of V^C "of the same type"? For example, if $V = \text{Ab}$ (the category of abelian groups), C a small abelian category, L the category of left exact functors from C to Ab, and S a cocontinuous triple on L, then L^S is a full reflective subcategory of Ab^C for some preadditive category C' by our theorem, but is C' abelian and is L^S the category of left exact functors from C' to Ab?

The following is an example where the answer to this question is positive.

Let C be a small category and let J be a topology on C making (C, J) into a site (as in [5, Definition 1.2, pp. 256–303]). Let A be the category of sheaves of sets on C, so that A is a full reflective subcategory of the functor category $(i, r): A \to \text{Sets}^{C^\text{op}}$, where $i: A \to \text{Sets}^{C^\text{op}}$ is the inclusion functor, then R is a left exact idempotent triple (where "left exact" means that the functor of R preserves finite limits).

Now $\text{Sets}^{C^\text{op}}$ is an example of an elementary topos (as in [6, p. 5]) and one sees that the topologies J on C are in one-to-one correspondence with the topologies on the elementary topos $\text{Sets}^{C^\text{op}}$ (as defined in [6]). One can then show (using [6, Proposition 3.22, p. 70]) that the assignment
$J \mapsto \mathcal{R}$ as in the previous paragraph gives a one-to-one correspondence between topologies J on C and left exact idempotent triples \mathcal{R} on Sets^{op}.

5. **Theorem.** Let C be a small category, J a topology on C, A the category of sheaves of sets on C with respect to J, and S a cocontinuous triple on A. Then there is a small category C' and a topology J' on C' so that A^S is a category of sheaves of sets on C' with respect to J'.

Proof. Let $B = \text{Sets}^{\text{op}}$, R the left exact idempotent triple corresponding to J, T the triple on B induced by S, and \hat{T} the cocontinuous approximation to T. Let C' be a category for which $B^{\hat{T}} \cong \text{Sets}^{\text{op}}$ (as in I). We have that $A^S \cong (B^{\hat{T}})^{\mathcal{R}}$, where \mathcal{R} is a lifting of R. Now the underlying functor from $B^{\hat{T}}$ to B is not only faithful but preserves and creates limits. Therefore, since R is a left exact idempotent triple, \mathcal{R} must also be. We now let J' be the topology on C' corresponding to \mathcal{R}, and we are done. \square

The referees of this paper have pointed out that Theorem 5 follows from Giraud's theorem (see [3, pp. 108–109]) in the following way. Since S is cocontinuous, the underlying functor $U: A^S \rightarrow A$ creates both limits and colimits. From this one sees that A^S is an exact category with limits, colimits, and disjoint universal sums. The free algebras in A^S on the set of generators in A are easily seen to form a set of generators for A^S. Thus, by Giraud's theorem, A^S is a topos, from which our Theorem 5 follows.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, CALIFORNIA 92664