A PROOF OF BERNSTEIN'S THEOREM
ON REGULARLY MONOTONIC FUNCTIONS

J. A. M. McHUGH

ABSTRACT. A function is called "regularly monotone" if it is of class C^∞ and each derivative is of a fixed sign (which may depend on the order of the derivative). We present a short proof of Bernstein's theorem on the analyticity of such functions.

This paper presents a short proof of Bernstein's theorem [1] on "regularly monotone" functions. For background on this subject (and a presentation of Bernstein's original proof) we refer the reader to the brief survey paper by Boas [2], and the references cited there. The book [3] contains a proof of a special case of Bernstein's theorem. That proof for that special case partially motivated the proof we present here. Before giving our proof of Bernstein's theorem, we recall that a regularly monotone function is a function of class C^∞ on a real interval (a, b) for which each derivative is of fixed sign on (a, b).

Theorem. If $F(x)$ is regularly monotone on (a, b), then $F(x)$ is analytic on (a, b).

Proof. We assume for convenience that $a = -b < 0$. We will prove that the even part of $F(x)$, $f(x)$, is analytic at $x = 0$. An analogous proof holds for the odd part of $F(x)$, and the analyticity of $F(x)$ thereby follows. We begin by noting that $f(x)$ is itself regularly monotone on $0 < x < b$. The following lemma is strategic for our proof.

Lemma. If $f^n(x) \leq 0$, $f^{n+1}(x) \geq 0$, and $f^{n+2}(x) \geq 0$, then for $x \in [0, b)$, $|R_n(x)| \geq |R_{n+1}(x)|$, where $R_m(x)$ is the mth remainder in the Taylor expansion of f about $x = 0$.

Proof of Lemma. Write the remainder as

Received by the editors November 5, 1973.

AMS (MOS) subject classifications (1970). Primary 26A48, 26A90, 26A93;
Secondary 26A24, 26A51, 26A84, 26A86.

Key words and phrases. C-infinity functions, analyticity, regularly monotonic functions.

Copyright © 1975, American Mathematical Society
A PROOF OF BERNSTEIN'S THEOREM

(1) \[R_n(x) = \frac{1}{(n-1)!} \int_0^x f^{(n)}(t)(x-t)^{n-1} dt. \]

A sufficient condition for the Lemma to be true is that

(2) \[-f^{(n)}(t) - \frac{(x-t)}{n} f^{(n+1)}(t) \geq 0 \]

for \(t \) on \((0, x)\). Since \(f^{(n+1)}(t) \geq 0 \), replacing \(n \) by 1 in (2) yields a sufficient condition for (2) to be true; namely

\[-f^{(n)}(t) - (x-t)f^{(n+1)}(t) \geq 0, \]

or, if we write \(g \) for \(f^{(n)} \),

(3) \[-g(t) - (x-t)g'(t) \geq 0. \]

By Rolle's theorem there exists a \(\xi \) on \((t, x)\) such that

(4) \[-g(\xi) - (x-\xi)g'(\xi) = -g(x) \geq 0. \]

Since \(g'' = f^{(n+2)} \geq 0 \), (3) follows from (4) (Q.E.D. Lemma).

If instead of the sign sequence of the Lemma one has either of the sign triples +, +, + or +, +, −, the Lemma's conclusion is immediate. Only for polynomials (analytic functions) can the triple +, −, + occur when \(f \) is even. For, in this case, \(f^{(n)} \) is even or odd. If \(f^{(n)} \) is even, say, then \(f^{(n+1)}(0) = 0 \). By supposition, \(f^{(n+2)}(x) \geq 0 \) for \(x \geq 0 \). Thus \(f^{(n+1)}(x) \geq 0 \) for \(x \geq 0 \). But also by supposition, \(f^{(n+1)}(x) \leq 0 \) for \(x \geq 0 \). Thus \(f^{(n+1)}(x) \equiv 0 \Rightarrow f \) is a polynomial. An analogous proof holds for \(f^{(n)} \) odd. Since one of these sign triples is always attainable (perhaps after \(f \to -f \)), it follows that for \(f \) even

(5) \[|R_n(x)| \geq |R_{n+1}(x)| \quad \text{for } n = 0, 1, 2, \ldots, \]

for \(x \) on \([0, b)\).

Frequently \(f^n \) and \(f^{n+1} \) are both \(\geq 0 \) (or both \(\leq 0 \)) (else eventually sign \((f^{(n)}) = (-1)^{n+K} \Rightarrow f \) is polynomial). Rewriting (1) as

(6) \[R_n(x) = \frac{x^n}{(n-1)!} \int_0^1 f^{(n)}(xt)(1-t)^{n-1} dt, \]

then for, say, \(f^{(n)} \) and \(f^{(n+1)} \geq 0 \) and \(x \geq 0 \), one has

(7) \[0 \leq R_n(x) \leq \frac{x^n}{(n-1)!} \int_0^1 f^{(n)}(b't)(1-t)^{n-1} dt, \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(x < b' < b \), since \(f^{(n_i)} \) is nondecreasing. Thus

\[
0 \leq R_{n_i}(x) \leq (x/b')^n R_{n_i}(b').
\]

But \(R_n(b') \) is bounded, whence \(R_n(x) \to 0 \) as \(n \to \infty \). Since for \(f(x) \) even, \(R_n(x) = R_n(-x) \), this proves the analyticity of \(f(x) \), the even part of \(F(x) \). The analyticity of \(F(x) \) itself then follows as initially indicated.

REFERENCES

BELL TELEPHONE LABORATORIES, WHIPPANY ROAD, WHIPPANY, NEW JERSEY 07981

Current address: Bell Telephone Laboratories, Holmdel, New Jersey 07733