Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Property $ \Gamma$ and inner amenability


Author: Edward G. Effros
Journal: Proc. Amer. Math. Soc. 47 (1975), 483-486
MSC: Primary 46L10
MathSciNet review: 0355626
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If the regular group von Neumann algebra of a countable, infinite conjugacy class group satisfies Property $ \Gamma $, then the group has a nontrivial mean which is invariant under inner automorphisms.


References [Enhancements On Off] (What's this?)

  • [1] J. Dixmier, Les algèbres d'opéerateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
  • [2] Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. MR 0251549
  • [3] Dusa McDuff, Uncountably many 𝐼𝐼₁ factors, Ann. of Math. (2) 90 (1969), 372–377. MR 0259625
  • [4] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 0009096
  • [5] Shôichirô Sakai, An uncountable number of 𝐼𝐼₁ and 𝐼𝐼_{∞} factors, J. Functional Analysis 5 (1970), 236–246. MR 0259626
  • [6] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19–26. MR 0149322

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10

Retrieve articles in all journals with MSC: 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0355626-6
Article copyright: © Copyright 1975 American Mathematical Society