WELL-DISTRIBUTED SEQUENCES WITH RESPECT TO SYSTEMS OF CONVEX SETS

H. NIEDERREITER

ABSTRACT. A theorem of W. M. Schmidt concerning the existence of sequences which are extremely well distributed with respect to suitable convex sets is generalized. We prove the existence of sequences which are simultaneously well distributed with respect to suitable systems of convex sets. The proof depends on combinatorial results dealing with the distribution of sequences in finite and countable sets.

1. Introduction. For $s \geq 2$, let $\mathbb{U}_s = \{(u_1, \cdots, u_s) \in \mathbb{R}^s: 0 \leq u_i < 1$ for $1 \leq i \leq s\}$ be the s-dimensional half-open unit cube. We consider a sequence x_1, x_2, \cdots of points in \mathbb{U}_s. For a positive integer n and a Lebesgue measurable subset S of \mathbb{U}_s, let $Z(n, S)$ be the number of $r, 1 \leq r \leq n$, with $x_r \in S$. We define the local discrepancy $D(n, S) = |Z(n, S) - n\lambda(S)|$, where λ denotes the s-dimensional Lebesgue measure, and $E(S) = \sup_n D(n, S)$. In a recent paper, W. M. Schmidt has shown the following remarkable theorem which is connected with the notion of isotropic discrepancy (see [1, Chapter 2]) and results on irregularities of distribution in [6], [7], [8].

Theorem 1 (Schmidt [8]). For any $s \geq 2$, there exists a sequence x_1, x_2, \cdots in \mathbb{U}_s such that for every μ with $0 \leq \mu \leq 1$ there is a convex subset S of \mathbb{U}_s satisfying $\lambda(S) = \mu$ and $E(S) \leq \frac{1}{2}$.

In this note, we prove a generalization of Theorem 1 to systems of convex sets. The basic idea is to combine Schmidt's method with some deep results in combinatorial theory pertaining to the distribution of sequences in finite and countable sets. Our final result is as follows.

Theorem 2. For any $s \geq 2$, there exists a sequence x_1, x_2, \cdots in \mathbb{U}_s...
satisfying the following property: for every integer \(k \geq 2 \) and any numbers \(\mu_1, \ldots, \mu_k \) in \([0, 1]\) with \(\sum_{j=1}^{k} \mu_j = 1 \), and also for any sequence \(\mu_1, \mu_2, \ldots \) of numbers in \([0, 1]\) with \(\sum_{j=1}^{\infty} \mu_j = 1 \), there are convex subsets \(S_1, \ldots, S_k \) (resp. \(S_1, S_2, \ldots \)) of \(\bigcup S \) with \(\lambda(S_j) = \mu_j \) for \(1 \leq j \leq k \) (resp. \(1 \leq j < \infty \)) and \(E(S_j) \leq 1 - 1/(2k - 2) \) for \(1 \leq j \leq k \) (resp. \(E(S_j) \leq 1 \) for \(1 \leq j < \infty \)), and such that every point \(x_n \) of the sequence lies in a unique \(S_j \).

We note that the case \(k = 2 \) in Theorem 2 yields Theorem 1 (see also Remark 2). To avoid a trivial case, we remark that if \(\mu_j = 0 \) for some \(j \), we may take the corresponding \(S_j \) to be the empty set. Thus, in the sequel, we can assume that \(0 < \mu_j < 1 \) for all \(j \).

2. Some combinatorial lemmas. In this section, we collect some useful facts concerning the distribution of sequences in finite and countable sets. This subject was studied recently in a number of papers [2], [3], [4], [5], [9].

For \(k \geq 1 \), let \(j_1, j_2, \ldots \) be a sequence of elements from the set \(\mathbb{Z}_k = \{1, 2, \ldots, k\} \). Given integers \(n \geq 1 \) and \(j \in \mathbb{Z}_k \), we define the counting function \(A(n, j) \) to be the number of \(r, 1 < r < n \), with \(j = r \).

Lemma 1 (Meijer [2]). For any \(k \geq 2 \) and any numbers \(\mu_1, \ldots, \mu_k \) in \((0, 1)\) with \(\sum_{j=1}^{k} \mu_j = 1 \), there exists a sequence \(j_1, j_2, \ldots \) in \(\mathbb{Z}_k \) satisfying \(|A(n, j) - n\mu_j| < 1 - 1/(2k - 2) \) for all \(n \geq 1 \) and all \(j \in \mathbb{Z}_k \).

For a sequence \(j_1, j_2, \ldots \) of elements from the set \(\mathbb{Z}_\infty = \{1, 2, \ldots\} \), we define the counting function \(A(n, j) \) in a like manner as above.

Lemma 1 (Tijdeman [9]). For any sequence \(\mu_1, \mu_2, \ldots \) of numbers in \((0, 1)\) with \(\sum_{j=1}^{\infty} \mu_j = 1 \), there exists a sequence \(j_1, j_2, \ldots \) in \(\mathbb{Z}_\infty \) satisfying \(|A(n, j) - n\mu_j| \leq 1 \) for all \(n \geq 1 \) and \(j \geq 1 \).

To combine the two cases, we write \(\epsilon_k = 1/(2k - 2) \) for \(2 \leq k < \infty \) and \(\epsilon_\infty = 0 \). In order to unify the discussion, \(k \) may also attain the value \(\infty \) from now on. We need a simple auxiliary result complementing the above two lemmas in the case of some \(\mu_j \) being close to 1.

Lemma 2. Let \(2 \leq k \leq \infty \), let the \(\mu_j, j \in \mathbb{Z}_k \), be as in Lemma 1\(k \), and suppose that \(\frac{1}{2} < \mu_h < 1 \) for some \(h \in \mathbb{Z}_k \). Let \(m \) be the largest integer such that \(\mu_h > 1 - 1/m \). Then there exists a sequence \(j_1, j_2, \ldots \) in \(\mathbb{Z}_k \) with \(j_r = h \) for \(1 \leq r \leq \lfloor m/2 \rfloor \) and \(|A(n, j) - n\mu_j| \leq 1 - \epsilon_k \) for all \(n \geq 1 \) and all \(j \in \mathbb{Z}_k \).

Proof. According to Lemma 1\(k \), there exists a sequence \(i_1, i_2, \ldots \) in
Z_k with $|A(n, j) - n\mu_j| \leq 1 - \epsilon_k$ for all $n \geq 1$ and all $j \in Z_k$. In particular, we have

$$A([m/2] + 1, h) \geq ([m/2] + 1)\mu_h - 1 + \epsilon_k.$$

Using $m \geq 2$, it follows that

$$A([m/2] + 1, h) > ([m/2] + 1)(1 - 1/m) - 1 + \epsilon_k$$

$$\geq [m/2] - 1 + \epsilon_k \geq [m/2] - 1.$$

Since $A([m/2] + 1, h)$ is an integer, we arrive at $A([m/2] + 1, h) \geq [m/2]$.

Thus, at most one of the i_r with $1 \leq r \leq [m/2] + 1$ can be different from h. It remains to consider the case that $i \neq h$ for some r with $1 \leq r \leq [m/2]$.

We define a new sequence j_1, j_2, \cdots in Z_k by setting $j_n = h$ for $1 \leq n \leq [m/2]$, $j_n = i_r$ for $n = [m/2] + 1$, and $j_n = i_n$ for $n > [m/2] + 1$. For $1 \leq n \leq r - 1$, and also for $n \geq [m/2] + 1$, the counting functions $A(n, j)$ of the old and the new sequence are identical. For $r \leq n \leq [m/2]$, the counting function of the new sequence satisfies

$$|A(n, h) - n\mu_h| = n(1 - \mu_h) < n/m < 1 - \epsilon_k,$$

and

$$|A(n, j) - n\mu_j| = n\mu_j < n/m \leq 1 - \epsilon_k$$

for $j \neq h$, since in this case $\mu_j < 1/m$. Therefore the new sequence enjoys all the required properties.

3. Proof of Theorem 2

We observe that it suffices to prove the theorem for $s = 2$. For if $x_1 = (x_1, y_1), x_2 = (x_2, y_2), \cdots$ is a sequence in \mathbb{U}^2 serving the desired purpose, then for $s > 3$ the sequence x'_1, x'_2, \cdots in \mathbb{U}^s defined by $x'_n = (x_n, y_n, 0, \cdots, 0)$ for $n \geq 1$ will do. To see this, one just has to take for any $k, 2 \leq k \leq \infty$, the convex subsets $S_j, j \in Z_k$, of \mathbb{U}^2 associated with a possible choice of numbers $\mu_j, j \in Z_k$, according to Theorem 2, and to replace them by the convex subsets $S'_j = S_j \times \mathbb{U}^{s-2}, j \in Z_k'$ of \mathbb{U}^s.

We consider now the case $s = 2$. Let t_1, t_2, \cdots be a decreasing sequence of real numbers with $0 < t_n \leq 1/(8n)$ for $n \geq 1$, and put

$$x_n = (x_n, y_n) = (1 - \cos t_n, \sin t_n)$$

for $n \geq 1$. All the points x_n lie on the circle $(x - 1)^2 + y^2 = 1$. For a given $k, 2 \leq k \leq \infty$, let the $\mu_j, j \in Z_k$, be numbers in the interval $(0, 1)$ with $\sum_j \epsilon Z_k \mu_j = 1$. According to Lemma 1, there exists a sequence j_1, j_2, \cdots
in \(\mathbb{Z}_k \) with \(|A(n, j) - n\mu_j| \leq 1 - \epsilon_k \) for all \(n \geq 1 \) and all \(j \in \mathbb{Z}_k \). In case \(\frac{1}{2} < \mu_h < 1 \) for some \(h \in \mathbb{Z}_k \), we suppose also that the sequence \(j_1, j_2, \cdots \) satisfies the additional condition in Lemma 2. For \(j \in \mathbb{Z}_k \) and \(n \geq 1 \), let \(F(n, j) \) be the set of those \(x_i, 1 \leq i \leq n \), with \(j_i = j \). We have of course \(\text{card} \ F(n, j) = A(n, j) \), and therefore

\[
(1) \quad |\text{card} \ F(n, j) - n\mu_j| \leq 1 - \epsilon_k \quad \text{for all} \quad n \geq 1 \quad \text{and all} \quad j \in \mathbb{Z}_k.
\]

Moreover, the sets \(F(n, j) \) and \(F(n', j') \) are disjoint as soon as \(j \neq j' \).

For fixed \(j \in \mathbb{Z}_k \), we define a convex subset \(G_1(j) \) of \(\mathbb{U}^2 \) by letting \(G_1(j) \) be the convex hull of the points \(x_i \) appearing in some \(F(n, j) \). It follows from (1) that \(\lim_{n \to \infty} \text{card} \ F(n, j) = \infty \). In addition, the sequence card \(F(n, j) \), \(n = 1, 2, \cdots \), is nondecreasing and attains all positive integers as values. Let \(n_2 \) be the smallest positive integer with \(\text{card} \ F(n_2, j) = 2 \). Then there exists \(n_1, 1 \leq n_1 < n_2 \), such that \(x_{n_1}, x_{n_2} \in F(n_2, j) \subseteq G_1(j) \). It is easily seen that \(\lambda(G_1(j)) \) is at most the area of the triangle bounded by the y-axis, the line segment joining \(x_{n_1} \) and the origin, and the line joining \(x_{n_1} \) and \(x_{n_2} \). Hence we get

\[
\lambda(G_1(j)) \leq \frac{1}{2} y n_2 = \frac{1}{2} \sin t n_2 < \frac{1}{2} t n_2 \leq 1/(16n_2).
\]

On the other hand, it follows from (1) with \(n = n_2 \) that \(|2 - n_2\mu_j| \leq 1 - \epsilon_k \), and so \(n_2\mu_j \geq 1 \). Therefore \(\lambda(G_1(j)) \leq \mu_j/16 \mu_j \).

For fixed \(j \in \mathbb{Z}_k \), we define a convex subset \(G_2(j) \) of \(\mathbb{U}^2 \) as follows. If \(0 < \mu_j \leq \frac{1}{2} \), let \(G_2(j) \) be the convex hull of the triangle \(0 \leq x < 1, 0 \leq y < 1, y < x \), and of the points \(x_i \) appearing in some \(F(n, j) \). Then \(\lambda(G_2(j)) \geq \frac{1}{2} \geq \mu_j \). If \(\frac{1}{2} < \mu_j < 1 \), let \(m \) be the largest integer such that \(\mu_j > 1 - 1/m \). Then \(G_2(j) \) is taken to be the convex hull of the points \(x_i \) appearing in some \(F(n, j) \) and of the open quadrilateral with vertices \(x_{[m/2]}, (1, 0), (1, 1), \) and \(x^* \), where \(x^* = (x^*, 1) \) is the intersection of the line \(y = 1 \) and the tangent to the circle \((x - 1)^2 + y^2 = 1 \) at \(x_{[m/2]} \). The quadrilateral contains the open rectangle with vertices \((x^*, [m/2]), (1, [m/2]), (1, 1) \), and \((x^*, 1) \) of area

\[
(1 - x^*)(1 - y_{[m/2]}) = (1 - y_{[m/2]})^2(1 - x_{[m/2]})^{-1}.
\]

Therefore

\[
\lambda(G_2(j)) > (1 - y_{[m/2]})^2 > 1 - 2y_{[m/2]} = 1 - 2 \sin t_{[m/2]}
\]

\[
> 1 - 2t_{[m/2]} \geq 1 - 1/(4[m/2]) \geq 1 - 1/(m + 1) \geq \mu_j,
\]
since $4[m/2] > m + 1$ for $m \geq 2$. Thus in both cases we have $\lambda(G_2(j)) > \mu_j$.

The proof is completed as in [8]. By construction, we have $G_1(j) \subseteq G_2(j)$, and it was established above that $\lambda(G_1(j)) < \mu_j < \lambda(G_2(j))$. There exists a convex subset S_j of U^2 with $G_1(j) \subseteq S_j \subseteq G_2(j)$ and $\lambda(S_j) = \mu_j$. Again by construction, we have

$$G_1(j) \cap \{x_1, \ldots, x_n\} = G_2(j) \cap \{x_1, \ldots, x_n\} = F(n, j)$$

for all $n \geq 1$; therefore $S_j \cap \{x_1, \ldots, x_n\} = F(n, j)$ for all $n \geq 1$. By (1), we get

$$D(n, S_j) = |Z(n, S_j) - n\lambda(S_j)| = |\text{card } F(n, j) - n\mu_j| \leq 1 - \epsilon_k$$

for all $n \geq 1$, and so $E(S_j) \leq 1 - \epsilon_k$. From the definition of the sets $F(n, j)$, it follows that every x_n lies in at least one S_j. Furthermore, for $i, j \in \mathbb{Z}_+$ with $i \neq j$, the intersection $S_i \cap S_j$ cannot contain any x_n, for otherwise $F(n, i) \cap F(n, j)$ would be nonempty for some $n \geq 1$.

4. Concluding remarks. To what extent is Theorem 2 best possible?

We add some remarks concerning this question and related matters.

Remark 1. The constant $1 - \epsilon_k$ in Theorem 2 is best possible. For suppose there exists $\delta_k > \epsilon_k$ such that Theorem 2 holds with $E(S_j) \leq 1 - \epsilon_k$ replaced by $E(S_j) \leq 1 - \delta_k$. We note that for every $n \geq 1$ there exists a unique $j \in \mathbb{Z}_k$ with $x_n \in S_j$. Consider the sequence j_1, j_2, \ldots in \mathbb{Z}_k. We have $A(n, j) = Z(n, S_j)$ for all $n \geq 1$ and all $j \in \mathbb{Z}_k$, and so

$$|A(n, j) - n\mu_j| = |Z(n, S_j) - n\lambda(S_j)| \leq 1 - \delta_k.$$

Thus for any choice of numbers $\mu_j, j \in \mathbb{Z}_k$, in $[0, 1)$ with $\sum_{j \in \mathbb{Z}_k} \mu_j = 1$, there would exist a sequence in \mathbb{Z}_k satisfying $|A(n, j) - n\mu_j| \leq 1 - \delta_k$ for all $n \geq 1$ and $j \in \mathbb{Z}_k$. However, this contradicts a result of Tijdeman [9].

Remark 2. If $1 \leq k \leq \infty$ and the $\mu_j, j \in \mathbb{Z}_k$, are numbers in $[0, 1]$ with $\sum_{j \in \mathbb{Z}_k} \mu_j < 1$, one may introduce the number $\mu_0 = 1 - \sum_{j \in \mathbb{Z}_k} \mu_j$ and apply Theorem 2. One arrives at a result analogous to Theorem 2, with the bounds on the $E(S_j)$ being $1 - 1/(2k)$ for finite k and 1 for $k = \infty$, and with the last condition replaced by the following one: “every point x_n of the sequence lies in at most one S_j.”

Remark 3. If $2 \leq k \leq \infty$ and the $\mu_j, j \in \mathbb{Z}_k$, are numbers in $[0, 1]$ with $\sum_{j \in \mathbb{Z}_k} \mu_j > 1$, then a result analogous to Theorem 2 cannot hold, even if we allow the dependence of the sequence on the μ_j and relax the conditions on the S_j. For suppose x_1, x_2, \ldots is a sequence in $\bigcup S$ for which there exist measurable subsets $S_j, j \in \mathbb{Z}_k$, of $\bigcup S$ with $\lambda(S_j) = \mu_j$ and $E(S_j) \leq$
B_k for all $j \in \mathbb{Z}_k$ and some finite B_k, and such that every x_n lies in a unique S_j. Using the same arguments as in Remark 1, we arrive at a sequence in \mathbb{Z}_k satisfying $|A(n, j) - n\mu_j| \leq B_k$ for all $n \geq 1$ and all $j \in \mathbb{Z}_k$. It follows that $\lim_{n \to \infty} A(n, j)/n = \mu_j$. On the other hand, by choosing $p \in \mathbb{Z}_k$ with $\sum_{j=1}^{p} \mu_j > 1$, we get

$$1 \geq \lim_{n \to \infty} \sum_{j=1}^{p} \frac{A(n, j)}{n} = \sum_{j=1}^{p} \mu_j > 1,$$

a contradiction.

Remark 4. If the sequence x_1, x_2, \cdots in Theorem 2 may depend on k and the numbers $\mu_j, j \in \mathbb{Z}_k$, a much simpler construction can be given. For each $i \in \mathbb{Z}_k$, define $\lambda_i = \sum_{j=1}^{i} \mu_j$ and $S_i = [\lambda_{i-1}, \lambda_i) \times \bigcup^{s-1}$ (with $\lambda_0 = 0$). Choose a point $y_i \in S_i$. Let j_1, j_2, \cdots be a sequence in \mathbb{Z}_k satisfying the property in Lemma 1. Then for the sequence x_1, x_2, \cdots in \bigcup^s with $x_n = y_{j_n}, n \geq 1$, the intervals $S_i, i \in \mathbb{Z}_k$, meet all the requirements of Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use