Well-distributed sequences with respect to systems of convex sets

Author:
H. Niederreiter

Journal:
Proc. Amer. Math. Soc. **47** (1975), 305-310

DOI:
https://doi.org/10.1090/S0002-9939-1975-0357362-9

MathSciNet review:
0357362

Full-text PDF

Abstract | References | Additional Information

Abstract: A theorem of W. M. Schmidt concerning the existence of sequences which are extremely well distributed with respect to suitable convex sets is generalized. We prove the existence of sequences which are simultaneously well distributed with respect to suitable systems of convex sets. The proof depends on combinatorial results dealing with the distribution of sequences in finite and countable sets.

**[1]**L. Kuipers and H. Niederreiter,*Uniform distribution of sequences*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0419394****[2]**H. G. Meijer,*On a distribution problem in finite sets*, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math.**35**(1973), 9–17. MR**0316258****[3]**H. G. Meijer and H. Niederreiter,*On a distribution problem in finite sets*, Compositio Math.**25**(1972), 153–160. MR**0335448****[4]**H. Niederreiter,*On the existence of uniformly distributed sequences in compact spaces*, Compositio Math.**25**(1972), 93–99. MR**0316661****[5]**H. Niederreiter,*A distribution problem in finite sets*, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 237–248. MR**0352027****[6]**Wolfgang M. Schmidt,*Irregularities of distribution. II*, Trans. Amer. Math. Soc.**136**(1969), 347–360. MR**0234923**, https://doi.org/10.1090/S0002-9947-1969-0234923-0**[7]**Wolfgang M. Schmidt,*Irregularities of distribution. IV*, Invent. Math.**7**(1969), 55–82. MR**0245532**, https://doi.org/10.1007/BF01418774**[8]**Wolfgang M. Schmidt,*Irregularities of distribution. VIII*, Trans. Amer. Math. Soc.**198**(1974), 1–22. MR**0360504**, https://doi.org/10.1090/S0002-9947-1974-0360504-6**[9]**R. Tijdeman,*On a distribution problem in finite and countable sets*, J. Combinatorial Theory Ser. A**15**(1973), 129–137. MR**0319776**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0357362-9

Keywords:
Isotropic discrepancy,
irregularities of distribution,
distribution in finite sets

Article copyright:
© Copyright 1975
American Mathematical Society