Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Eigenvectors and maximal vectors in Boolean vector spaces


Author: Ronald L. Sinzdak
Journal: Proc. Amer. Math. Soc. 47 (1975), 323-328
DOI: https://doi.org/10.1090/S0002-9939-1975-0357452-0
MathSciNet review: 0357452
Full-text PDF

Abstract | References | Additional Information

Abstract: In this paper it is shown that every idempotent, self-adjoint linear endomorphism in a finite-dimensional normed Boolean vector space has its norm as an eigenvalue. A completely algebraic proof is also given for the fact that every linear endomorphism in such a space possesses a maximal vector.


References [Enhancements On Off] (What's this?)

  • [1] P. V. Jagannadham, Linear transformations in a Boolean vector space, Math. Ann. 167 (1966), 240-247. MR 34 #1239. MR 0201355 (34:1239)
  • [2] D. E. Rutherford, The eigenvalue problem for Boolean matrices, Proc. Roy. Soc. Edinburgh Sect. A 67 (1963/65), 25-38. MR 32 #4056. MR 0186597 (32:4056)
  • [3] N. V. Subrahmanyam, Boolean vector spaces. I, Math. Z. 83 (1964), 422-433. MR 30 #43. MR 0169800 (30:43)
  • [4] -, Boolean vector spaces. II, Math. Z. 87 (1965), 401-419. MR 30 #3043. MR 0172825 (30:3043)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0357452-0
Keywords: Boolean vector space, eigenvectors, eigenvalues, adjoint, linear endomorphism, projection, maximal vector, normal endomorphism
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society