TRUNCATED POLYNOMIAL RINGS
OVER POINCARÉ ALGEBRAS

R. PAUL BEEM

ABSTRACT. There are given, in certain cases, necessary and suffi-
cient conditions for a truncated polynomial ring over a \mathbb{Z}_2-Poincaré alge-
bra to again be a Poincaré algebra. Applications are a splitting theorem
for Poincaré algebras and an algebraic bordism classification for real
projective space bundles.

1. Introduction. Let H^* be a \mathbb{Z}_2-Poincaré algebra [1] and x a class of
degree $m = 1, 2$. We will investigate the conditions under which the quotient
of the ring generated by H^* and x by the relation $x^n + a_1x + \cdots + a_n = 0$,
where a_i is in H^{im}, is again a Poincaré algebra.

Among those spaces whose \mathbb{Z}_2-cohomology algebras form such rings are:

(i) the real (complex) projective space bundle of a real (complex) vector
bundle over a finite CW-complex. a_i is the ith (2ith) Stiefel-Whitney class
of the vector bundle, and x is the class of the $\mathbb{Z}_2(S^1)$ cover of the projective
space bundle by the sphere bundle of the vector bundles.

(ii) any $RP(2k)$ or $CP(2k)$ fibration over a smooth closed manifold.
(Such a fibration must be totally nonhomologous to zero, since w_1 pulls
back nontrivially.)

(iii) the Dold manifold $P(n, m) = S^n \times \mathbb{Z}_2 CP(m)$ [7].

(iv) any $P(1, 2k)$ fibration over a smooth closed manifold [2].

If $y = 1 + y_1 + \cdots + y_r$ satisfies the Wu relations for the action of $\bar{\Omega}(2)$,
the mod-2 Steenrod algebra, on a Stiefel-Whitney class, we will call y an
"sw-class". See [4] for the Wu relations.

Our main results are

Theorem 1. If $m = 1$, then $K^* = H^*[x]/(x^n + a_1x^{n-1} + \cdots + a_n)$ is a
Poincaré algebra if and only if $a = 1 + a_1 + \cdots + a_n$ is an sw-class in H^*.
Theorem 2. If \(m = 2 \) and if \(H^*[x] = H^* \otimes \mathbb{Z}_2[x] \) is given the \(\mathbb{A}(2) \)-
structure induced by the relation \(Sq^1 x = bx \) for some \(b \) in \(H^1 \), then \(K^* \) is a
Poincaré algebra if \((1 + b)^n + a_1(1 + b)^n - 1 + \cdots + a_n \) is an sw-class in \(H^* \).
Conversely, if \(K^* \) is a Poincaré algebra, where the degree of \(x \) is two and
\(Sq^1 x = bx \) for some \(b \) in \(H^1 \), then \((1 + b)^n + a_1(1 + b)^n - 1 + \cdots + a_n \) is an
sw-class in \(H^* \).

As corollaries of Theorem 1, we show:

Theorem 3. If \(a = 1 + a_1 + \cdots + a_n \) is an sw-class in a Poincaré alge-
bra \(H^* \), then there is a Poincaré algebra \(L^* \) and a monomorphism of \(H^* \) into
\(L^* \) which takes \(a \) into a product \(\prod_{i=1}^n (1 + y_i) \), where \(y_i \) is in \(L^1 \) for every \(i \).

Theorem 4. If \(a = 1 + a_1 + \cdots + a_n \) is an sw-class in the Poincaré
algebra \(H^* \), then there is a vector bundle \(\eta \) over a smooth closed manifold \(M \)
such that (i) \(H^* \) and \(H^*(M; \mathbb{Z}_2) \) are (algebraically) bordant; and (ii) \(K^* \) and
\(H^*(\mathbb{P}(\eta); \mathbb{Z}_2) \) are (algebraically) bordant, where \(\mathbb{P}(\eta) \) denotes the total
space of the real projective bundle associated with \(\eta \). (One should compare
this with [5, Proposition 8.4].)

Theorem 5. \(w(K^*) = w(H^*)(\sum_{i=0}^n a_i(1 + x)^{n-i}) \), where \(w(H^*) \) and \(w(K^*) \)
are the "tangent" sw-classes constructed using duality and the \(\mathbb{A}(2) \)-
structure.

We will prove Theorems 1 and 2 in §2 and the corollaries in §3. All
algebras will be over \(\mathbb{Z}_2 \) and cohomology will be singular theory with \(\mathbb{Z}_2 \)
coefficients.

The author wishes to express his deep gratitude to his advisor, Pro-
fessor Robert E. Stong of the University of Virginia, for all his help and en-
couragement during the preparation of the author's dissertation of which this
paper is a portion.

2. Proof of Theorem 1. Let \(a = 1 + a_1 + \cdots + a_n \) be an sw-class in \(H^* \),
where \(a_i \) is in \(H^i \). Let
\[
\sigma: H^*(BO(n)) \to H^*(BO(n)) \otimes H^*(BO(1))
\]
be induced by the tensor product of the universal vector bundles over the
classifying spaces \(BO(n) \) and \(BO(1) \). Let \(\alpha: H^*(BO(n)) \to H^* \) take the un-
iversal sw-class \(1 + w_1 + \cdots + w_n \) to \(a \), and

\[
\Psi: H^*(BO(n)) \otimes H^*(BO(1)) \to H^* \otimes H^*(BO(1))
\]
be $\alpha \otimes$ (identity). Finally, let
\[\theta: H^* \otimes H^*(BO(1)) \rightarrow H^*[x] \]
be the natural identification. The composite $\theta(\Psi(a))$ takes w_n to $x^n + a_1x^{n-1} + \cdots + a_n$ and is an $\tilde{A}(2)$-module homomorphism. Since $\text{Sq}^i w_n = w_{n+i}$ in $H^*(BO(n))$, K^* admits an $\tilde{A}(2)$ action. Since the obvious homomorphism from $K^{n+p-1} \rightarrow \tilde{Z}_2$, where $\dim H^* = p$, does, in fact, provide duality for K^*, K^* is a Poincaré algebra.

Conversely, suppose K^* is a Poincaré algebra. Let L^* denote the cohomology of the product $\prod_{i=1}^{\infty} K(Z, i)$, where $K(Z, i)$ is an Eilenberg-Mac Lane space. There is the homomorphism $\Psi \otimes$ (identity): $L^* \otimes \tilde{Z}_2[x] \rightarrow H^* \otimes \tilde{Z}_2[x]$, where $\Psi(a) = a_\tau$, a_τ being nonzero in $H^*(K(Z, r))$ and the quotient of $H^* \otimes \tilde{Z}_2[x]$ to K^*, both of which are $\tilde{A}(2)$-module homomorphisms. Denote the composite by $\phi: L^* \otimes \tilde{Z}_2[x] \rightarrow K^*$.

We claim that there are "universal" polynomials $q_{ij}(\tau_1, \cdots, \tau_n)$ in L^* (i.e., independent of H^* and a) such that $\phi(\text{Sq}^i \tau_j + q_{ij}) = 0$ for every i and j. In fact, one may show that
\[
\sum_{j=1}^{n} x^{n-j} \phi(\text{Sq}^i \tau_j) = \text{Sq}^i \phi\left(\sum_{j=1}^{n} x^{n-j} \tau_j \right) + \sum_{l=1}^{n} \sum_{j=0}^{n-l} \binom{n-1}{l} x^{n-j+l} \phi(\text{Sq}^{i-l} \tau_j).
\]
But $\phi(\sum_{j=0}^{n} x^{n-j} \tau_j) = 0$, and inductively we can assume that $\phi(\text{Sq}^{i-l} \tau_j) = \phi(q_{i-l,j})$. Since there are universal polynomials $P_{rs}(\tau_1, \cdots, \tau_n)$ with
\[
x^{n-1+s} = \phi\left(\sum_{r=0}^{n-1} p_{rs} x^r \right),
\]
it follows that
\[
q_{ij}(\tau_1, \cdots, \tau_n) = \sum_{r=0}^{n-1} \sum_{s=1}^{i} \binom{n-r}{s} p_{n-j, s-r+1} q_{i-s, r}.
\]

Let J be the ideal in L^* generated by the elements $\text{Sq}^i \tau_j + q_{ij}$, $\beta: L^* \rightarrow L^*/J$ and β' be the restriction of β to the subring $\tilde{Z}_2[i_1, \cdots, i_n]$. It follows from the above paragraph that β' is an epimorphism and that J is contained in the kernel of Ψ.

Let $\alpha: L^* \rightarrow H^*(BO(n))$ be that usual homomorphism, the kernel of which is generated by the Wu relations. J is contained in the kernel of α (which may be seen, for example, by taking for H^* the cohomology of the product of n copies of $RP(2n + 1)$). Since $Z_2[i_1, \cdots, i_n]$ is ring isomorphic
to $H^*(BO(n))$, L^*/J is generated by the Wu relations. Therefore Ψ annihilates the Wu relations and $1 + a_1 + \cdots + a_n$ is an sw-class. \square

Before proving Theorem 2, we need a preliminary result.

Lemma 1. If H^* is a Poincaré algebra, b in H^1, g in H^3 and $Sq^1 g = bg$, then $H^*[x]$, where x is given a degree of two, can be given a unique $\mathfrak{A}(2)$-structure by setting $Sq^1 x = bx + g$.

Proof. Recall that

$$H^*(K(Z_2, 2)) \cong \mathbb{Z}_2[\iota, Sq^1 \iota, Sq^2 \iota, \cdots, Sq^n \iota, \cdots],$$

where $Sq^m = Sq^2 Sq^2 \cdots Sq^1$. Let $L^* = H^* \otimes H^*(K(Z_2, 2))$ and consider the elements u_i, where $u_1 = Sq^1 \iota + b \iota + g$, and to get u_{n+1} from u_n, one writes $u_n = Sq^{n-1} \iota + P_n(\iota)$, sets $Q_n(\iota, Sq^1 \iota) = Sq^2 P_n(\iota)$ and $P_{n+1}(\iota) = Q_n(\iota, b \iota + g)$ to get

$$u_{n+1} = Sq^n \iota + P_{n+1}(\iota).$$

One shows that

$$u_n = Sq^{n-1} \iota + \sum_{r=0}^{n-1} b(2^{n-2r+1} + 1) \iota 2^r + c_n,$$

where

$$c_1 = g \text{ and } c_{n+1} = Sq^n c_n + b(2^{n+1} - 2),$$

and then that

$$u_{n+1} = Sq^n u_n + b(2^{n+1} - 2)u_1.$$

If J is the ideal in L^* generated by the u_i's, it follows that J is an $\mathfrak{A}(2)$-ideal. Let $L^* = L^*/J$. Then $L^* \cong H^*[x]$ as rings, and we give $H^*[x]$ the $\mathfrak{A}(2)$-structure of L^*. \square

Proof of Theorem 2. Suppose $H^*[x]$ is given the $\mathfrak{A}(2)$-structure induced by $Sq^1 x = bx$ for some b in H^1, and that $(1 + b)^n + a_1 (1 + b)^{n-1} + \cdots + a_n$ is an sw-class in H^*. Let $1 + w_1 + \cdots + w_{2n}$ be this class, where w_i is in H^i. Then

$$L^* = H^*[y]/\langle y^{2n} + w_1 y^{2n-1} + \cdots + w_{2n} \rangle$$

is a Poincaré algebra, where the degree of y is one. (One may think of L^* as being the "RP-algebra" over the "CP-algebra", K^*.)

If $d = y^2 + yb$,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
then $\text{Sq}^1 d = bd$ and $H^*[d]$ is, as an $\mathfrak{G}(2)$-submodule of $H^*[y]$, isomorphic to $H^*[x]$.

Let $\alpha: H^*[y] \rightarrow L^*$. Then

$$\alpha(H^*[d]) \cong H^*[1, d, \ldots, d^{n-1}],$$

as H^*-modules, and there will be some relation of the form $d^n + a_1 d^{n-1} + \cdots + a_n$. Therefore

$$\sum_{i=0}^{n} c_i (b + c)^i a_{n-i} = \sum_{j=0}^{2n} c_j w_{2n-j}.$$

But

$$\sum_{j=0}^{2n} c_j w_{2n-j} = \sum_{i=0}^{n} c_i (b + c)^i a_{n-i}.$$

Hence $a_i = a'_i$ and $\langle d^n + a_1 d^{n-1} + \cdots + a_n \rangle$ is an $\mathfrak{G}(2)$ ideal.

Conversely, suppose K^* is a Poincaré algebra. Note that $K^*[y]/(y^2 + by + x)$ is also a Poincaré algebra, where the degree of y is one. Clearly, this ring is freely generated over H^* by $\{1, y, \ldots, y^n\}$, and there is a relation $\sum_{i=0}^{2n} y_i w_{2n-i} = 0$, for some w_i in H^i. In fact,

$$1 + w_1 + \cdots + w_{2n} = (1 + b)^n + a_1 (1 + b)^{n-1} + \cdots + a_n.$$

This is an sw-class by Theorem 1. □

3. Before proceeding to Corollary 3, we need a preliminary result, which is probably well known.

Lemma 2. If $a = 1 + a_1 + \cdots + a_n$ and $b = 1 + b_1 + \cdots + b_m$ are sw-classes in an $\mathfrak{G}(2)$-algebra X^*, then so are a^{-1} and ab.

Proof. There are the homomorphisms α and β from $H^*(BO)$ to X^* which send the universal sw-class w to a and b, respectively. Composing α with the $\mathfrak{G}(2)$-homomorphism $H^*(BO) \rightarrow H^*(BO)$, which inverts w, sends w to a^{-1}. Hence a^{-1} is an sw-class. Similarly, composing $\alpha \otimes \beta$ and multiplication in X^* with the Whitney sum homomorphism $H^*(BO) \rightarrow H^*(BO) \otimes H^*(BO)$ sends w to ab. □

Proof of Theorem 3. By Theorem 1, K^* is a Poincaré algebra. Setting $b_i = \sum_{j=0}^{i} x^i a_{i-j}$ yields $a = (1 + x)(1 + b_1 + \cdots + b_{n-1})$. By the lemma, $b = 1 + b_1 + \cdots + b_{n-1}$ is an sw-class in K^*. The inclusion of H^* in K^* is a monomorphism. The result follows. □
Next, one recalls [3] the natural equivalence \(a^{N_*}(H^*(X)) \cong N_* (X) \) between the algebraic bordism of \(H^*(X) \) and the unoriented bordism of \(X \). If \(H^*(X) \to H^* \) and \(M \to X \), where \(H^* \) is a Poincaré algebra and \(M \) is a smooth manifold, correspond under this equivalence, we will call them "bordant." Similarly, we will say that an \(n \)-plane bundle \(\eta \) over \(M \) is bordant to \(H^*(BO(n)) \to H^* \) if the classifying map for \(\eta, f: M \to BO(n) \), is bordant to \(H^*(BO(n)) \to H^* \).

Let \(X^* \) be any left \(\mathfrak{A}(2) \)-algebra and suppose that \(f^*: X^* \otimes H^*(BO(n)) \to H^* \) is a left \(\mathfrak{A}(2) \)-algebra homomorphism, where \(H^* \) is a Poincaré algebra. Then there is a homomorphism

\[
X^* \otimes H^*(BO(n)) \otimes H^*(BO(1)) \to H^*[x]/(x^n + a_1x^{n-1} + \cdots + a_n),
\]

where the degree of \(x \) is 1, where \(\Sigma_i a_i \) is induced by the universal sw-class in \(H^*(BO(n)) \), which is \(f^* \) on \(X^* \otimes H^*(BO(n)) \) and which sends \(w_1 \) in \(H^1(BO(1)) \) to \(x \). The next result will imply Theorem 4.

Lemma 3. The above construction is well defined on algebraic bordism and yields a homomorphism

\[
a^{N_m}(X^* \otimes H^*(BO(n))) \to a^{N_m + m - 1}(X^* \otimes H^*(BO(n)) \otimes H^*(BO(1))).
\]

Proof. Suppose \(X^* \otimes H^*(BO(n)) \xrightarrow{f^*} H^* \) bounds, and that \(J^* \subset H^* \) denotes the self-annihilating subalgebra (with unity) closed under both left and right \(X^* \otimes H^*(BO(n)) \otimes \mathfrak{A}(2) \) action, the existence of which is equivalent to the hypothesis [6]. Since 1 is in \(J^* \), so is \(\Sigma a_i \). Let

\[
R^* = J^*[x]/(x^n + a_1x^{n-1} + \cdots + a_n) \subset K^*.
\]

We claim that \(R^* \) is a self-annihilating subalgebra closed under left and right action of \(X^* \otimes H^*(BO(n)) \otimes H^*(BO(1)) \otimes \mathfrak{A}(2) \), and therefore that \(K^* \) bounds. (Since the construction is clearly additive, this will prove the lemma.) But \(R^* \) is obviously closed under the left action. Since \(a^{-1} \) is a polynomial in \(a_i \), and is therefore in \(J^* \), one sees that \(R^* \) is contained in its annihilator, \(R' \). To show that \(R' \subset R^* \), let \(k_j = \Sigma_{i=0}^j b_i x^{j-i} \) be in \((R')^n + m - 1 - j \) for \(b_i \) in \(H^i \). An induction on \(i \) shows that \(b_i \) is in \(J^{m-i} \), and therefore that \(k_j \) is in \(R^i \). Hence \(R' \subset R^* \). It follows that \(R^* \) is closed under the right action of \(X^* \otimes H^*(BO(n)) \otimes H^*(BO(1)) \otimes \mathfrak{A}(2) \). \(\square \)

Therefore, if \(a = \Sigma a_i \) in \(H^* \) is a given sw-class and \(f: M \to BO(n) \) is
bordant to it, $RP(f^*(y_n))$ with its canonical line bundle is bordant to K^* with its sw-class $1 + x$. □

Proof of Theorem 5. Let $w(K^*) = 1 + w_1 + \cdots + w_{n+m-1}$ and $w(H^*)(\sum_{i=0}^n (1 + x)^i a_{n-1}) = 1 + u_1 + \cdots + u_{n+m-1}$. If $\tau: H^*(BO(m)) \to H^*$ is the "tangent" homomorphism, we have the homomorphism

$$\tau \otimes \alpha \otimes (id): H^*(BO(m)) \otimes H^*(BO(n)) \otimes H^*(BO(1))$$

$$\to H^* \otimes H^* \otimes \mathbb{Z}_2[x] \to K^*,$$

where α "realizes" a, and the second homomorphism is multiplication in H^* followed by the projection to K^*. If $(\tau \otimes \alpha \otimes \text{id})(y_i) = u_i + w_i \neq 0$, there would be an h in H^S with $\mu_K(h(u_i + w_i) x^j) \neq 0$ and h would define a homomorphism $\sigma: H^*(K(Z_2, s)) \to H^*$, by $\sigma(\iota) = h$, where ι is nonzero in $H^S(K(Z_2, s))$.

We would then have a manifold M and a map $f: M \to BO(m) \times K(Z_2, s) \times BO(n)$ bordant to

$$\tau \otimes \sigma \otimes \alpha: H^*(BO(m)) \otimes H^*(K(Z_2, s)) \otimes H^*(BO(n)) \to H^*.$$

Setting $X = BO(m) \times K(Z_2, s)$, $X^* = H^*(X)$ and denoting the induced n-plane bundle over M by η, we would get a map $RP(\eta) \to X \times BO(n) \times BO(1)$ bordant to $X^* \otimes H^*(BO(n)) \otimes H^*(BO(1)) \to K^*$.

But y_i goes to zero in $H^*(RP(\eta))$ and hence, so does $\iota \otimes y_i \otimes w_i$. This contradiction establishes the result. □

REFERENCES