Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A reformulation of the Radon-Nikodým theorem

Authors: Jonathan Lewin and Mirit Lewin
Journal: Proc. Amer. Math. Soc. 47 (1975), 393-400
MSC: Primary 28A15
MathSciNet review: 0376999
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Radon-Nikodym theorems of Segal and Zaanen are principally concerned with the classification of those measures $ \mu $ for which any $ \lambda \ll \mu $ is given in the form

$\displaystyle ({\text{i}})\quad \lambda (A) = \int_A {gd\mu } $

for all sets $ A$ of finite $ \mu $ measure.

This paper is concerned with the characterization of those pairs $ \lambda ,\mu $ for which the equality (i) holds for every measurable set $ A$, and introduces a notion of compatibility that essentially solves this problem. In addition, some applications are made to Radon-Nikodym theorems for regular Borel measures.

References [Enhancements On Off] (What's this?)

  • [1] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
  • [2] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
  • [3] Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
  • [4] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555
  • [5] Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
  • [6] I. E. Segal, Equivalences of measure spaces, Amer. J. Math. 73 (1951), 275–313. MR 0041191
  • [7] A. C. Zaanen, The Radon-Nikodym theorem. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 157–170, 171–187. MR 0146340

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A15

Retrieve articles in all journals with MSC: 28A15

Additional Information

Keywords: Radon-Nikodym theorem, measure space, Borel measure, absolute continuity, differentiation of measures
Article copyright: © Copyright 1975 American Mathematical Society