UNIQUE HAHN-BANACH EXTENSIONS
AND KOROVKIN'S THEOREM

LYNN C. KURTZ

ABSTRACT. This paper characterizes in terms of weak topologies those bounded linear functionals on a subspace which have unique Hahn-Banach extensions to the whole linear normed space. The relationship to the Choquet boundary is discussed, and a Korovkin type theorem is obtained.

We begin with a different proof of Korovkin's theorem in order to motivate that which follows.

Theorem 1 (Korovkin [2]). Suppose \{L_n\} is a sequence of positive linear functionals on \(C[0, 1] \) satisfying \(L_n(1) \rightarrow 1 \), \(L_n(l) \rightarrow c \), and \(L_n(l^2) \rightarrow c^2 \). (Here \(l \) is the identity function.) Then \(L_n(f) \rightarrow f(c) \) for all \(f \in C[0, 1] \).

Proof of Theorem 1. Identify \(C^* \) with the regular Borel measures on \([0, 1]\). Identify \(L_n \) with a regular positive measure by \(L_n(f) = \int f d\mu_n \). Any subnet \(\mu_\alpha \) of \(\{\mu_n\} \) has a further subnet \(\mu_\gamma \) converging \(w(C^*, C) \) to some \(\mu \), and it follows that \(\mu_\gamma(1) \rightarrow \mu(1) = \|\mu\| \). In particular \(\mu(1) = 1 \), \(\mu(l) = c \), and \(\mu(l^2) = c^2 \). Then \(\mu \) must be \(\delta_c \), the point evaluation measure, for suppose \(\mu(1) < 1 \); then there is an open interval \(J \) containing \(c \) with \(\mu(J) < 1 \). Let \(g(x) = (x - c)^2 \) and \(\tau = \min J g(x) > 0 \). Then

\[
0 = \int_0^1 (l - c)^2 d\mu \geq \int_0^1 (l - c)^2 d\mu = \tau \mu(\hat{f}) = \tau (1 - \mu(f)) > 0,
\]

a contradiction. Since every subnet of \(\{\mu_n\} \) has a further subnet converging \(w(C^*, C) \) to \(\delta_c \), then \(\mu_n \rightarrow \delta_c \) in \(w(C^*, C) \), hence \(L_n f = \int f d\mu_n \rightarrow \int d\delta_c = f(c) \) for all \(f \in C[0, 1] \).

While this proof is admittedly less elementary than Korovkin's, it makes it clear that the heart of the matter is the fact that the point evaluation func-
tional ξ_c is the only Hahn-Banach extension of its restriction to the subspace $\text{span}(1, I, I^2)$. This, of course, can be viewed as resulting from the fact that the Choquet boundary of $\text{span}(1, I, I^2)$ is $[0, 1]$. Wulbert [7], [8], using this observation and the fact that point evaluations are the extreme points in the unit ball of C^*, has defined a generalized Choquet boundary $cb(P)$ for weakly separating subspaces P of a linear normed space, and he proved a nice Korovkin theorem for such subspaces. In this paper we take the position that the central issue is not extreme points, but unique Hahn-Banach extensions.

If (X, T_1, T_2) is a space with two topologies, we shall say the topologies T_1 and T_2 are equivalent at the point x if they have equivalent neighborhood bases at x. This can happen if and only if each net x_δ in X converging to x in T_1 converges to x in T_2 and vice versa. Also recall that if $S \subset X$, x_δ is a net in S, and $x \in S$, then $x_\delta \rightarrow x$ in the relative T_1 topology on S if and only if $x_\delta \rightarrow x$ in (X, T_1) [6].

In what follows, if X is a linear normed space, we denote by X^* the space of continuous linear functionals on X, by S^* the unit ball in X^*, and by $w(X^*, X)$ the weak-star topology on X^*.

Definition. If X is a linear normed space and M is a subspace, we define the set $K(M)$ by $K(M) = \{x^* \in X^* \mid \|x^*\| = 1 \text{ and such that } x^*|M = y^*|M \text{ implies } x^* = y^* \text{ if } \|y^*\| \leq 1\}$. Note that if $X = C[0, 1]$, M is a subspace containing the constants and separating points of $[0, 1]$, and the points of the Choquet boundary $B(M)$ are identified with their point evaluation functionals, then $B(M) \subset K(M)$. Examples with other subspaces M follow.

(i) $M = \text{span}(1)$. The value $\mu(1)$ is the μ measure of $[0, 1]$, and it is clear that any μ with $\|\mu\| = 1$ has many different Hahn-Banach extensions, so $K(M) = \Phi$.

(ii) $M = \{f/\ell_2 = (f(0) + f(1))/2\}$ (Phelps [3]). Here $B(M) = \{\xi_\alpha \mid 0 \leq \alpha \leq 1, \alpha \neq 1/2\}$. Here $B(M) \subset K(M)$ properly since any measure μ with $\|\mu\| = 1$ having the property that there is an open interval $J \subset [0, 1]$ with $1/2 \in J$ and $|\mu|(J) = 0$ is in $K(M)$. Note that $\xi_{1/2} \notin K(M)$.

(iii) If M is dense, then $K(M) = \{x^* \in S^* \mid \|x^*\| = 1\}$.

We now formulate a theorem characterizing the points of $K(M)$.

Theorem 2. A point $x^* \in S^*$ with $\|x^*\| = 1$ is in $K(M)$ if and only if the topologies induced on S^* by $w(X^*, M)$ and $w(X^*, X)$ are equivalent at x^*.

Proof of Theorem 2. Suppose $x^* \in K(M)$. Suppose x^*_α is a net in S^* converging to x^* in relative $w(X^*, M)$. Any subnet x^*_β has a $w(X^*, X)$ (hence...
relative $w(X^*, X)$ convergent subnet x^*_γ, say $x^*_{\gamma} \rightarrow y^*$. It follows that $y^* \in S^*$ and $y^*|M = x^*|M$. Hence $y^* = x^*$ since $x^* \in K(M)$ and $x^*_\alpha \rightarrow x^*$ in relative $w(X^*, X)$. Conversely, suppose the two topologies are equivalent at $x^* \in S^*$, where $\|x^*\| = 1$. Suppose $y^* \in S^*$ and $y^*|M = x^*|M$. Define a net $x^*_{\alpha} \rightarrow y^*$ relative $w(X^*, M)$, hence in relative $w(X^*, X)$, hence in $w(X^*, X)$. Similarly $x^*_\alpha \rightarrow x^*$ relative $w(X^*, M)$, hence in $w(X^*, X)$. This implies that $x^* = y^*$, so $x^* \in K(M)$ and the proof is complete.

In [7], Wulbert proves a theorem similar to the "only if" part of the last theorem for weakly separating subspaces M and the corresponding $cb(M)$. In this case $cb(M) \subseteq K(M)$; for suppose $x^* \in cb(M)$; then x^* is extreme in $S(M^*)$. Suppose $y^* \in S^*$ with $y^*|M = x^*|M$. If y^* is extreme in S^*, then $y^* = x^*$ since M is weakly separating. In fact, y^* must be extreme in S^*, for if not, then y^* and x^* are in the face $F = \{z^*| \|z^*\| = 1 \}$ and $z^*|M = x^*|M$, and the Krein-Milman theorem implies the existence of an extreme point $w^* \neq x^*$ in F. This contradicts the fact that M is weakly separating.

This shows $x^* \in K(M)$ and $cb(M) \subseteq K(M)$. We also observe that if $x^* \in K(M)$ and $x^*|M$ is extreme in $S(M^*)$, then x^* is extreme in S^*; for suppose $x^* = ty^* + (1 - t)z^*$, $y^*, z^* \in S^*$, $0 < t < 1$. Restricting this to M gives $x^*|M = y^*|M = z^*|M$ since $x^*|M$ is extreme in $S(M^*)$. But then $x^* = y^* = z^*$, since $x^* \in K(M)$, hence x^* is extreme in S^*.

We now formulate a Korovkin type theorem.

Theorem 3. If L_α is a net of operators in $B[X, X]$ with $\|L_\alpha\| \leq 1$, and if $\|L_\alpha x - x\| \rightarrow 0$ for all x in a subspace M, then $x^* L_\alpha x \rightarrow x^* x$ uniformly on all $w(X^*, X)$ compact subsets of $K(M)$ for each x in X.

Proof of Theorem 3. If not, there exist $\epsilon > 0$, a $w(X^*, X)$ compact set $D \subseteq K(M)$, $x \in X$, a subnet L_β of L_α, and a net $x^*_\beta \in D$ such that

\[
|x^*_\beta L_\beta x - x^* x| \geq \epsilon.
\]

By taking a further subnet, we may assume $x^*_\beta \rightarrow x^* \in K(M)$ in $w(X^*, X)$. If $y \in M$, then

\[
|x^*_\beta L_\beta y - x^* y| \leq |x^*_\beta L_\beta y - x^*_\beta y| + |x^*_\beta y - x^* y|
\leq \|x^*_\beta\| \|L_\beta y - y\| + \|x^*_\beta y - x^* y\| \rightarrow 0.
\]

But since $x^* \in K(M)$ and $\|x^*_\beta L_\beta\| \leq \|x^*_\beta\| \|L_\beta\| \leq 1$, this implies $x^*_\beta L_\beta(x) \rightarrow x^*(x)$ for all $x \in X$. This together with the fact that $x^*_\beta(x) \rightarrow x^*(x)$ for all $x \in X$ contradicts inequality (*) above, and completes the proof.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
While this argument is much the same as Wulbert's [8], it should be
noted we have no assumptions on \(M \) other than it is a subspace, and \(cb(M) \subset K(M) \) can be a proper containment when \(cb(M) \) exists.

REFERENCES

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281 (Current address)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506