On the Frattini subgroup of a residually finite generalized free product

Authors:
R. B. J. T. Allenby and C. Y. Tang

Journal:
Proc. Amer. Math. Soc. **47** (1975), 300-304

MSC:
Primary 20E30

DOI:
https://doi.org/10.1090/S0002-9939-1975-0390066-5

MathSciNet review:
0390066

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the generalized free product of the groups amalgamating the subgroup , and let denote its Frattini subgroup. In support of the conjecture that whenever is resiually finite and satisfies a nontrivial identical relation, we show, amongst several other things, that the above inequality is indeed valid if in addition at least one of the following holds: (i) , each satisfies a nontrivial identical relation; (ii) is finitely generated; (iii) is nilpotent. In particular (i) completes earlier investigations of the second author. The methods of proof are, however, different.

**[1]**R. B. J. T. Allenby and C. Y. Tang,*On the Frattini subgroups of generalized free products*, Bull. Amer. Math. Soc.**80**(1974), 119-121. MR**0327908 (48:6250)****[2]**John D. Dixon,*Problems in group theory*, Blaisdell, Waltham, Mass., 1967. MR**36**#1514. MR**0218428 (36:1514)****[3]**D. Ž. Djoković and C. Y. Tang,*On the Frattini subgroup of generalized free products with amalgamations*, Proc. Amer. Math. Soc.**32**(1972), 21-23. MR**0289656 (44:6844)****[4]**J. L. Dyer,*On the residual finiteness of generalized free products*, Trans. Amer. Math. Soc.**133**(1968), 131-143. MR**38**#5930. MR**0237649 (38:5930)****[5]**R. J. Gregorac,*On residually finite generalized free products*, Proc. Amer. Math. Soc.**24**(1970), 553-555. MR**41**#5498. MR**0260878 (41:5498)****[6]**G. Higman and B. H. Neumann,*On two questions of Itô*, J. London Math. Soc.**29**(1954), 84-88. MR**15**, 286. MR**0057881 (15:286g)****[7]**C. Y. Tang,*On the Frattini subgroups of certain generalized free products of groups*, Proc. Amer. Math. Soc.**37**(1973), 63-68. MR**46**#9176. MR**0310073 (46:9176)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20E30

Retrieve articles in all journals with MSC: 20E30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0390066-5

Keywords:
Frattini subgroup,
residually finite,
generalized free product,
identical relation

Article copyright:
© Copyright 1975
American Mathematical Society