Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stiefel-Whitney numbers and maps cobordant to embeddings


Author: Richard L. W. Brown
Journal: Proc. Amer. Math. Soc. 48 (1975), 245-250
DOI: https://doi.org/10.1090/S0002-9939-1975-0358830-6
MathSciNet review: 0358830
Full-text PDF

Abstract | References | Additional Information

Abstract: A necessary and sufficient condition is given for a continuous map between compact differentiable manifolds to be cobordant in the sense of Stong to an embedding. For the case of a map $ f:{M^n} \to {S^{n + k}}$ the condition reduces to the vanishing of all Stiefel-Whitney numbers of $ {M^n}$ that involve $ {\bar w_i}$ for $ i \geq k$.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125-132. MR 26 #3080. MR 0145549 (26:3080)
  • [2] R. L. W. Brown, Immersions and embeddings up to cobordism, Canad. J. Math. 13 (1971), 1102-1115. MR 45 #6017. MR 0296958 (45:6017)
  • [3] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750. MR 0176478 (31:750)
  • [4] B. J. Sanderson and R. L. E. Schwarzenberger, Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322. MR 26 #5589. MR 0148080 (26:5589)
  • [5] R. E. Stong, Cobordism of maps, Topology 5 (1966), 245-258. MR 33 #4945. MR 0196759 (33:4945)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0358830-6
Keywords: Cobordism of maps, Stiefel-Whitney numbers, embeddings
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society