ON COMMUTATIVE POWER-ASSOCIATIVE NILALGEBRAS OF LOW DIMENSION

MURRAY GERSTENHABER AND HYO CHUL MYUNG

ABSTRACT. Commutative power-associative nilalgebras of dimension 4 and characteristic ≠ 2 are shown to be nilpotent and all their isomorphism classes are determined.

The long-standing conjecture, originally due to A. A. Albert, that a commutative power-associative nilalgebra of finite dimension over a field is nilpotent, has recently been disproved by Suttles [4], who gave a counterexample of dimension 5. This dimension is generally the best possible, for we show here that every commutative power-associative nilalgebra of dimension 4 over a field of characteristic ≠ 2 is nilpotent, and we determine the isomorphism classes of all such algebras. The proof is elementary and cannot be significantly simplified by the use of the general results of [1] and [2], which require, moreover, additional assumptions about the characteristic.

Throughout, A will denote a commutative power-associative nilalgebra of dimension 4 over a field F of characteristic ≠ 2. The subspace of A generated by elements u, v, w, ⋯ will be denoted by (u, v, w, ⋯). Since every x ∈ A is nilpotent, the powers of x are linearly independent, so we must have x^n = 0 for n ≥ 5; the least n such that x^n = 0 for all x ∈ A is called the nil-index. Now the product of any two elements of A can be written as a linear combination of squares, for xy = (x + y)^2 - x^2 - y^2]. Therefore, if the nilindex is 2, then every product vanishes. If it is 5, then A = (x, x^2, x^3, x^4) for any x with x^4 ≠ 0. These are trivial cases, in each of which there is, up to isomorphism, a unique, associative, algebra. Only the cases of nilindex 3 and 4 are of interest.

1. Nilindex 3. Linearizing the identity (x^2)x = 0 yields
2[(xy)z + (yz)x + (zx)y] = 0 for all x, y, z ∈ A. Therefore, denoting right...
multiplication by \(x \) by \(R_x \) we have, for all \(y, z \in A \),
\[
R_y R_z + R_z R_y = - R_{yz}.
\]
Setting \(y = z = x \) gives
\[
(1) \quad R_x^2 = -2 R_x,
\]
Setting \(y = x, z = x^2 \) in (1), and noting that \(x^3 = 0 \), gives
\[
R_x^3 = 0,
\]
which with (2) implies that \(R_x^3 = 0 \). Now choose any \(x \in A \) with \(x^2 \neq 0 \),
and set \(X = (x, x^2) \). This is carried into itself by \(R_x \), which therefore operates
on the two-dimensional quotient \(A/X \). As \(R_x \) is nilpotent, we have
\[
R_x^2(A/X) = 0,
\]
so \((xy)x \in X \) for all \(y \in A \), i.e., \((yx)x = ax + \beta x^2 \) for some \(a, \beta \in F \). Since \(R_x^3 = 0 \), multiplying by \(x \) shows that \(a = 0 \), after which using
(2) and the fact that \(R_y \) is also nilpotent shows \(\beta = 0 \) also. Thus \(yx^2 = 0 \),
and since every product is a linear combination of squares, this shows that
the product of any three elements of \(A \) is zero. In particular, \(A \) is associ-ative, so we have

Theorem 1. A commutative power-associative nilalgebra \(A \) of nilindex 3
and of dimension 4 over a field \(F \) of characteristic \(\neq 2 \) is associative, and
\(A^3 = 0 \).

These algebras being associative, their classification is well known;
cf. Kruse and Price [3, Chapter VI]: If \(\dim A^2 = 1 \), then one defines a sym-
metric bilinear form on the 3-dimensional space \(A/A^2 \) by choosing any \(x \)
with \(x^2 \neq 0 \) and defining the product of the cosets of \(u, v \in A \) to be \(\alpha \) when-
ever \(uv = \alpha x^2 \); with respect to this form the length of \(x \) itself is clearly 1.
The problem of classifying these algebras up to isomorphism is identical
with that of classifying such forms with the additional condition that there
be a vector of length 1. Unfortunately, this problem is completely solved
only for certain special fields, e.g., the real and complex numbers. If
\(\dim A^2 = 2 \), the only other possibility, then one chooses \(x, y \in A \) such that
\(x^2 \) and \(xy \) span \(A^2 \). Subtracting, if necessary, a multiple of \(x \) from \(y \) one
can, moreover, so choose \(y \) such that \(y^2 = \alpha x^2 \) for some \(\alpha \in F \). It is easy to
check that if one takes any other \(x \) and \(y \) with these properties, then \(\alpha \) is
replaced by \(\alpha c^2 \) for some \(c \neq 0 \). Therefore, denoting the multiplicative
group of \(F \) by \(F^* \), these algebras are parameterized by the elements of
\(F^*/(F^*)^2 \) and 0.

2. Nilindex 4. Choose any \(x \) with \(x^3 \neq 0 \) and set \(X = (x, x^2, x^3) \). We
claim \((x^2, x^3) = A^2 \). It is sufficient to show that \(y^2 \in (x^2, x^3) \) for all \(y \), and
we may further suppose $y \notin X$ and $y^2 \neq 0$, else the matter is trivial. Set $Y = (y, y^2, y^3)$. Then $X \cap Y$ is a proper subalgebra of X, hence must be contained in (x^2, x^3), and is a subalgebra of Y of dimension equal to $\dim Y - 1$ (since $\dim X = 3$), and therefore must contain y^2; thus $y^2 \in (x^2, x^3)$ as asserted. It follows that $A^2A^2 = 0$. Now y being arbitrary, we have $yx^2 \in A^2$, hence $yx^2 = ax^2 + bx^3$ for some $a, b \in F$. We claim $a = 0$. Otherwise, setting $z = (1/a)(y - bx)$, we have $zx^2 = x^2$; computing $[(z + x^2)^2(z + x^2)] \cdot (z + x^2)$, which must vanish, we find, using the fact that $A^2A^2 = 0$, that it is $2x^2$, a contradiction. If now we replace x by $x + x^2$, thereby replacing x^2 by $x^2 + 2x^3$ but leaving x^3 unchanged, it follows that yx^3 is also a multiple of x^3. In fact, $yx^3 = 0$, for if $yx^3 = dx^3$, then computing $[(y + x^3)^2(y + x^3)] \cdot (y + x^3)$, which must vanish, one gets $2d^3x^3$, so $d = 0$. We see now that replacing the original y by $y - bx$, for which we have $(y - bx)x^2 = 0$, one can so choose y such that $y \notin X$ and $yx^2 = yx^3 = 0$, so $yA^2 = 0$. The product of any four of the elements x, x^2, x^3, y vanishes, and as these span A, it follows that the product of any 4 elements of A vanishes, so $A^4 = 0$. Therefore, we have

Theorem 2. If A is a commutative power-associative nilalgebra of nil-index 4 and of dimension 4 over a field F of characteristic $\neq 2$, then $A^4 = 0$ and there is $y \notin A^2$ such that $yA^2 = 0$.

Theorem 2. If A is a commutative power-associative nilalgebra of nil-index 4 and of dimension 4 over a field F of characteristic $\neq 2$, then $A^4 = 0$ and there is $y \notin A^2$ such that $yA^2 = 0$.

The y of the theorem is not unique, but as $\dim A/A^2 = 2$, there cannot be, modulo A^2, two independent elements both annihilating A^2, so y^2 is determined up to multiplication by an element of $(F^*)^2$. As before, x will denote an element of A such that $x^3 \neq 0$; then clearly $y \notin (x, x^2, x^3)$ so $A = (x, x^2, x^3, y)$. We have the following possibilities:

1. We can so choose x and y such that $yx = 0$. If $y^2 = 0$ then A is unique, the direct sum of (y) and (x, x^2, x^3), and is associative. If $y^2 = \beta x^3$ with $\beta \neq 0$, setting $y' = y/\beta$ and $x' = x/\beta$ gives $y'^2 = x'^3$. This unique algebra is also associative. If $y^2 = \alpha x^2 + \beta x^3$ with $\alpha \neq 0$, replacing x by $x + (\beta/2\alpha)x^2$ shows we may assume $\beta = 0$. Clearly α is determined at most up to multiplication by an element of $(F^*)^2$, and it is easy to check that another choice of x and y replaces α by αc^2 for some $c \neq 0$, so we have a family of algebras, all nonassociative, parameterized by the elements of $F^*/(F^*)^2$.

2. We cannot so choose x and y such that $yx = 0$. Therefore we cannot have $yx = \beta x^3$ since $x(y - \beta x^2) = 0$. Choosing any x with $x^3 \neq 0$, we may assume that $yx = yx^2 + \delta x^3$ with $y \neq 0$. Replacing x by $yx + (\delta/2)x^2$ shows we
may so choose \(x \) such that \(yx = x^2 \). If \(y^2 = 0 \) we have a unique nonassociative algebra. If \(y^2 = \beta x^3 \) with \(\beta \neq 0 \), replacing \(x \) by \(x/\beta \) and \(y \) by \(y/\beta \) shows we may assume \(\beta = 1 \) and we have a unique algebra, which is not associative. Finally, if \(y^2 = ax^2 + \beta x^3 \) with \(a \neq 0 \), then as \(y(y - ax) = \beta x^3 \), we must have \((y - ax)^3 = 0 \) (else we would replace \(x \) by \(y - ax \)); the left side is \(a^2(1 - a)x^3 \), so \(a = 1 \). Replacing \(x \) by \(x + (\beta/2)x^2 \) and \(y \) by \(y + \beta x^2 \), shows we may assume \(\beta = 0 \), so we have a unique algebra given by \(y^2 = yx = x^2 \) and, as always, \(yx^2 = yx^3 = 0 \). It is not associative. This ends the classification. We have found one family of algebras parameterized by \(F*/(F^*)^2 \), and 5 individual algebras of which precisely 2 are associative.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTHERN IOWA, CEDAR FALLS, IOWA 50613