Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Generalised Vandermonde determinants and Schur functions

Author: R. C. King
Journal: Proc. Amer. Math. Soc. 48 (1975), 53-56
MSC: Primary 15A15
MathSciNet review: 0371919
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A formula for determinants similar to that of Vandermonde is given in terms of the Vandermonde determinant and Schur functions. The Schur functions are then expressed in terms of symmetric monomial functions.

References [Enhancements On Off] (What's this?)

  • [1] A. M. Fink, Certain determinants related to the Vandermonde, Proc. Amer. Math. Soc. 38 (1973), 483-488. MR 47 #239. MR 0311677 (47:239)
  • [2] I. Schur, Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen, Inaugural Dissertation, Berlin, 1901.
  • [3] D. E. Littlewood, The theory of group characters, 2nd ed., University Press, Oxford, 1950.
  • [4] F. D. Murnaghan, The theory of group representation, Johns Hopkins Press, Baltimore, Md., 1938.
  • [5] G. de B. Robinson, Representation theory of the symmetric group, Math. Expositions, no. 12, Univ. of Toronto Press, Toronto, 1961. MR 23 #A3182. MR 0125885 (23:A3182)
  • [6] S. Blaha, Character analysis of $ U(N)$ and $ SU(N)$, J. Mathematical Phys. 10 (1969), 2156-2168. MR 40 #8354. MR 0255149 (40:8354)
  • [7] R. C. King and S. P. O. Plunkett, The evaluation of branching rules for linear groups using mappings between weight spaces, J. Phys. 33 (1972), 145-153.
  • [8] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London A233 (1934), 99-141.
  • [9] T. Muir, Theory of determinants, Vols. (i), (ii), (iii) and (iv), Macmillan, London, 1906.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A15

Retrieve articles in all journals with MSC: 15A15

Additional Information

Keywords: Vandermonde determinant, Schur functions
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society