Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Restricted centers in $ C(\Omega )$


Authors: Philip W. Smith and J. D. Ward
Journal: Proc. Amer. Math. Soc. 48 (1975), 165-172
MSC: Primary 41A65
DOI: https://doi.org/10.1090/S0002-9939-1975-0380227-3
MathSciNet review: 0380227
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The concept of restricted center is a natural generalization of the notion of Chebyshev center. We prove a necessary and sufficient condition for a bounded subset $ A$ of $ C(\Omega ),\Omega $ paracompact, to have a restricted center with respect to $ B$, another subset of $ C(\Omega )$. This theorem is then applied to subspaces of finite codimension in $ C(I),I$ a compact interval.


References [Enhancements On Off] (What's this?)

  • [1] A. L. Garkavi, The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106; English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 111-132. MR 25 #429. MR 0136969 (25:429)
  • [2] R. B. Holmes, A course in optimization and best approximation, Lecture Notes in Math., vol. 257, Springer-Verlag, New York, 1972. MR 0420367 (54:8381)
  • [3] R. B. Holmes, Private communication.
  • [4] I. M. Kadeć and V. Zamjatin, Chebyshev centers in the space $ C[a,b]$, Teor. Funkciľ Funkcional. Anal. i Priložen. Vyp. 7 (1968), 20-26. (Russian) MR 42 #3480. MR 0268583 (42:3480)
  • [5] E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238. MR 1529282
  • [6] E. Rozema and P. Smith, Global approximation with bounded coefficients J. Approximation Theory (to appear). MR 0404950 (53:8748)
  • [7] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Editura Acad. Republ. Soc. România, Bucharest, 1967; English transl., Die Grundlehren der math. Wissenschaften, Band 171, Springer-Verlag, New York, and Berlin, 1970. MR 38 #3677; 42 #4937. MR 0270044 (42:4937)
  • [8] P. Smith and J. Ward, Restricted centers in subalgebras of $ C(X)$ (manuscript).
  • [9] J. Ward, Existence and uniqueness of Chebyshev centers in certain Banach spaces, Thesis, Purdue University, 1973.
  • [10] V. N. Zamjatin, Relative Čebyšev centers in the space of continuous functions, Dokl. Akad. Nauk SSSR 209 (1973), 1267-1270 = Soviet Math. Dokl. 14 (1973), 610-614. MR 0324279 (48:2631)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A65

Retrieve articles in all journals with MSC: 41A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0380227-3
Keywords: Chebyshev center, best approximation, proximinal
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society