Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \mathrm{Ext}(A,\,T)$ as a module over $ \mathrm{End}(T)$


Authors: S. A. Khabbaz and E. H. Toubassi
Journal: Proc. Amer. Math. Soc. 48 (1975), 269-275
MSC: Primary 20K05
DOI: https://doi.org/10.1090/S0002-9939-1975-0360865-4
MathSciNet review: 0360865
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that for abelian groups $ A$ and $ T$, where $ A$ is of finite rank and $ T$ is torsion, the End $ (T)$-module $ \operatorname{Ext} (A,T)$ is finitely generated or is of finite rank.


References [Enhancements On Off] (What's this?)

  • [1] L. Fuchs, Abelian groups, Akad. Kiadó Budapest, 1958; republished by Internat. Ser. of Monographs on Pure and Appl. Math., Pergamon Press, New York, 1960. MR 21 #5672; 22 #2644. MR 0111783 (22:2644)
  • [2] L. Fuchs, Infinite abelian groups. Vols. I, II, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970, 1973. MR 41 #333.
  • [3] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391. MR 21 #3481. MR 0104728 (21:3481)
  • [4] I. Kaplansky, Infinite abelian groups, rev. ed., Univ. of Michigan Press, Ann Arbor, Mich., 1969. MR 38 #2208. MR 0233887 (38:2208)
  • [5] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
  • [6] C. Megibben, On mixed groups of torsion-free rank one, Illinois J. Math. 11 (1967), 134-144. MR 34 #2691. MR 0202832 (34:2691)
  • [7] H. Prüfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären abelschen Gruppen, Math. Z. 17 (1923), 35-61. MR 1544601
  • [8] E. H. Toubassi, On the group of extensions, Acta Math. Acad. Sci. Hungar. 24 (1973), 87-92. MR 47 #364. MR 0311802 (47:364)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K05

Retrieve articles in all journals with MSC: 20K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0360865-4
Keywords: Module of extensions, rank, finitely generated, classification, homological methods in group theory
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society