Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$ \mathrm{Ext}(A,\,T)$ as a module over $ \mathrm{End}(T)$

Authors: S. A. Khabbaz and E. H. Toubassi
Journal: Proc. Amer. Math. Soc. 48 (1975), 269-275
MSC: Primary 20K05
MathSciNet review: 0360865
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that for abelian groups $ A$ and $ T$, where $ A$ is of finite rank and $ T$ is torsion, the End $ (T)$-module $ \operatorname{Ext} (A,T)$ is finitely generated or is of finite rank.

References [Enhancements On Off] (What's this?)

  • [1] L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783
  • [2] L. Fuchs, Infinite abelian groups. Vols. I, II, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970, 1973. MR 41 #333.
  • [3] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 0104728
  • [4] Irving Kaplansky, Infinite abelian groups, Revised edition, The University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
  • [5] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
  • [6] Charles K. Megibben, On mixed groups of torsion-free rank one, Illinois J. Math. 11 (1967), 134–144. MR 0202832
  • [7] Heinz Prüfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen, Math. Z. 17 (1923), no. 1, 35–61 (German). MR 1544601, 10.1007/BF01504333
  • [8] E. H. Toubassi, On the group of extensions, Acta Math. Acad. Sci. Hungar. 24 (1973), 87–92. MR 0311802

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K05

Retrieve articles in all journals with MSC: 20K05

Additional Information

Keywords: Module of extensions, rank, finitely generated, classification, homological methods in group theory
Article copyright: © Copyright 1975 American Mathematical Society