A NOTE ON A COROLLARY OF SARD'S THEOREM

JOHN C. WELLS

ABSTRACT. A corollary of Sard's theorem is the following:

Corollary. Let \(f: K \to \mathbb{R}^n \) be a smooth (i.e. \(f \in C^k, k \geq 1 \)) map defined on a compact subset \(K \) of \(\mathbb{R}^n \). Let \(C = \{ y | f^{-1}(y) \text{ is infinite} \} \). Then the Lebesgue measure of \(C \) is zero.

The purpose of this note is to show that a similar version of this theorem holds for Lipschitz functions.

Theorem. Let \(f: K \to \mathbb{R}^n \) with \(f \) Lipschitz, \(K \) a measurable subset of \(\mathbb{R}^n \) and \(m(K) \) the Lebesgue measure of \(K \), less than \(\infty \). Let \(C = \{ y | f^{-1}(y) \text{ is infinite} \} \). Then \(m(C) = 0 \).

The proof of the theorem will require two lemmas.

Lemma 1. Let \(f: X \to \mathbb{R}^m \) with \(X \) a compact subset of \(\mathbb{R}^n \) and \(f \) a continuous function. Then there exists \(K' \subset K \) with \(f(K') = f(K) \), \(f|_{K'} \) one to one and \(K' \) a Borel set.

Proof. Let \(x_i \) denote the \(i \)th coordinate of \(x \). Define for \(j = 1, 2, 3, \ldots \),

\[A_j = \{ x \in X : \text{there exists } y \in X \text{ with } y_j \leq x_j - 1/j \text{ and } f(y) = f(x) \} \]

or\[A_j = \{ x \in X : \text{there exists } y \in X \text{ with } y_j = x_j, y_j \leq x_j - 1/j \text{ and } f(y) = f(x) \} \]

or

\[A_j = \{ x \in X : \text{there exists } y \in X \text{ with } y_j = x_j, \ldots, y_{n-1} = x_{n-1}, y_n \leq x_n - 1/j \text{ and } f(y) = f(x) \} \].

Since \(A_j \) is compact for each \(j \), \(K' = K - \bigcup_j A_j \) is Borel. If \(x \in f(K) \) observe that \(y \) defined by

\[y_1 = \inf \{ z_1 | f(z) = f(x) \}, \ldots, y_n = \inf \{ z_n | z_1 = y_1, \ldots, z_{n-1} = y_{n-1}, f(z) = f(x) \} \]

is not contained in \(A_j \) for any \(j \) and also \(f(y) = f(x) \). Thus \(f(K') = f(K) \). Clearly \(f|_{K'} \) is one to one.

Lemma 2. Let \(f: K \to \mathbb{R}^m \) be a continuous map from \(K \) a measurable subset of \(\mathbb{R}^n \). Then there exist \(K', K'' \) with \(K'' \subset K' \subset K \), \(K'' \) and \(K' \) Borel sets, \(f|_{K''} \) one to one, \(m(K - K') = 0 \) and \(f(K'') = f(K') \).

Proof. There exists an \(F_{\sigma} \) set \(K' \), with \(K' \subset K \) and \(m(K - K') = 0 \), and we can write \(K' = \bigcup_n K_n \) where \(K_n \) is compact for each \(n \). By Lemma 1...
there are Borel sets \(K'_n \subseteq K_n \) with \(f(K'_n) = f(K_n) \) and \(f|_{K'_n} \) one to one for each \(n \). Define recursively \(D_1 = K'_1, \ldots, D_k = D_{k-1} \cup (K'_k - f^{-1}(f(D_{k-1}))) \).

Then \(K'' = \bigcup_k D_k \) is Borel, \(f(K'') = f(K') \) and \(f|_{K''} \) is one to one.

Proof of Theorem. Suppose \(m(C) = a > 0 \). Let \(A = f^{-1}(C) \) and find by Lemma 2 \(N'' \subseteq N' \subseteq A \) with \(N'' \) and \(N' \) Borel, \(m(A_1 - N'_1) = 0 \), \(f|_{N''} \) one to one and \(f(N''_1) = f(N'_1) \). Since \(f \) is Lipschitz, \(m(f(A_1 - N'_1)) = 0 \). Therefore \(m(f(N''_1)) = a \). Now \(f(A_1 - N''_1) = C \) by the definition of \(C \). Thus for \(k = 2, 3, \ldots \) by letting \(A_k = A_{k-1} - N''_{k-1} \) we can repeat the above argument to find \(N''_k \subseteq N'_k \subseteq A_k \) with \(f|_{N''_k} \) one to one, \(f(N''_k) = f(N'_k) \) and \(m(f(N''_k)) = a \).

Suppose that \(L \) is the Lipschitz constant for \(f \); then \(m(N''_k) \geq a/L \) for each \(k \). But since \(N''_k \cap N'_k = \emptyset \) for \(k = k' \), this implies \(m(K) = \infty \), a contradiction.

Remarks. The requirement that \(f \) be Lipschitz in the theorem cannot be weakened to a requirement of continuity. To show this let \(f \) be the first coordinate of a continuous map of the unit interval \(I \) onto the unit square \(I^2 \) (i.e. a space-filling curve). Then \(f^{-1}(y) \) is infinite for each \(y \in I \).

On the other hand, for \(n = 1 \) absolute continuity will suffice as the following argument shows. Suppose \(f \) is a real valued a.c. function on \(I \). Then \(f \) is differentiable except on a set \(A_1 \) of measure zero. \(m(f(A_1)) = 0 \) since \(f \) is a.c. Let \(A_2 = \{ x | f'(x) = 0 \} \) and let \(\eta \) be an arbitrary positive number. For each \(x \in A_2 \) there are arbitrarily small intervals containing \(x \) such that \(|f(y) - f(x)| \leq |y - x| \) when \(y \) is in the intervals. Thus the collection \(\mathcal{F} \) of all such intervals with \(x \) varying over \(A_2 \) is a Vitale covering of \(A_2 \), so there is a disjoint collection \(\{ I_n \} \subseteq \mathcal{F} \) with \(m(A_2 - \bigcup_n I_n) = 0 \). But then \(m(f(A_2)) \leq m \left(f \left(A_2 - \bigcup_n I_n \right) \right) + m \left(f \left(\bigcup_n I_n \right) \right) \leq 0 + 2\eta \cdot \sum_n \text{length}(I_n) \leq 2\eta. \)

Since \(\eta \) is arbitrary, \(m(f(A_2)) = 0 \). Finally, if \(y \in f(I) - f(A_1) - f(A_2) \) then \(f^{-1}(y) \) must consist of isolated points and hence be finite. Thus \(m|_{f^{-1}(y)} \) is infinite \} = 0.

REFERENCES

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, NORTH RIDGE, CALIFORNIA 91324

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use