THE DOMAIN RANK OF A SURFACE IS COUNTABLE

RICHARD J. TONDRA

ABSTRACT. In this paper it is shown that any surface has at most countably infinite domain rank.

1. Introduction. For the convenience of the reader we first recall some of the definitions found in [1], [2], and [3]. A surface M is a connected, separable, metrizable 2-manifold and a domain D of a surface M is an open connected subset of M. If M is a surface, a set of surfaces G^* is called a set of generating domains for M if given any proper domain D of the surface M, there is an element G_D of G^* such that $D = \bigcup_{k=1}^{\infty} D_k$ where for all k, D_k is a domain of M, $D_k \subset D_{k+1}$, and D_k is homeomorphic to G_D (in such case we say that G_D generates D or that D is an open monotone union of G_D). The domain rank of M, denoted by $DR(M)$, is defined by

$$DR(M) = \text{g.l.b.} \{|G^*| : G^* \text{ is a set of generating domains for } M\},$$

where $|G^*|$ denotes the cardinality of G^*.

The study of the domain rank of a surface is naturally motivated by the fact established in [1] that any domain D of the plane R^2 is generated by $R^2 - \{(0, n) \mid n \text{ is a positive integer}\}$. This paper completes the study of this problem which has been previously considered in [1], [2], and [3].

2. Proof of the Theorem. Let M be a noncompact surface, $bd M \neq \emptyset$. Let $s(M)$ be the number of components of $bd M$ which are 1-spheres. If $s(M) = 0$, let $M_c = M$; otherwise let $s(M) = s$, $1 \leq s \leq \infty$, and let $\{S_j\}_{j=1}^{s}$ be the collection of boundary components which are homeomorphic to S^1. Let $Q = \bigcup_{j=1}^{s} D_j$ be a disjoint union of 2-cells, $f: bd Q \to M$ be a continuous function which maps $bd D_j$ homeomorphically onto S_j, and M_c be the surface defined by $M_c = Q \cup f$. We will identify M_c, S_j, and D_j with their embedded images under the identification $p: Q + M_c$ and thus $M = M_c - (\bigcup_{j=1}^{s} \text{int } D_j)$. Let $N = bd M_c \times [0, 1) \cup g M_c$ where $g(x, 0) = x$ for...
all $x \in bd M_c$. Again, identify $bd M_c \times [0, 1)$ and all subsets of M_c^- with their embedded images under the identification $q : bd M_c \times [0, 1) + M_c \rightarrow N$. As in [3], let (X, Y, Z) denote the ideal boundary of the open surface N. Thus in view of Theorem 1.1 of [3], we may assume that N is obtained from S^2 by removing X and then removing the interiors of a finite or infinite sequence $\{C^+_k\}$ of pairwise disjoint 2-cells and properly identifying the boundaries of these 2-cells. Furthermore, it is clear that we may assume that each of these 2-cells does not meet $(bd M_c \times [0, 1) \cup (\bigcup_{j=1}^s D_j))$.

Let $W = bd M_c \times (0, 1)$ and $L_c = S^2 - (X \cup W)$. Then we can obtain M_c from L_c by removing the interiors of the 2-cells C^+_k and properly identifying the boundaries.

Now consider a point $b \in$ ideal boundary X of N. We will say b is peripheral to M \iff there exists some component K of $bd M_c = bd L_c$ such that the closure of K in S^2 is $K \cup \{b\}$. If b is peripheral to M, then a boundary leaf of M at b is any closed set of the form $K \cup \{b\}$ where K is a boundary component of M_c.

We now wish to construct a domain D which generates M. Let p denote the genus of M, $0 \leq p \leq \infty$; q the class of $N =$ class of int M, $1 \leq q \leq 4$; $s = s(M)$ the number of components of bd M which are 1-spheres, $0 \leq s \leq \infty$; and t the number of points $b \in$ ideal boundary of N which are peripheral to M, $0 \leq t \leq \infty$. Let F be the closed subset of S^2 defined by

$$F = X \cup bd M_c \times [0, 1) = X \cup W \cup bd L_c.$$

Assume that the sequence of disks $\Gamma_1 = \{C^+_{k}\}^{r}_{k=1}$, $0 \leq r \leq \infty$, is chosen as in the remark following Theorem 1.1 of [3]. If p is finite, then r is finite and we set $\Gamma_1' = \Gamma_1$. If p is infinite, then as in the proof of Theorem 2.1 of [3] we may choose an appropriate subsequence $\Gamma_1' = \{C^+_{k}\}^{\infty}_{k=1}$ of Γ_1 which converges to a point $x_1 \in X$. Furthermore, we may assume that this subsequence is chosen such that for all cases, $0 \leq p \leq \infty$, we can construct a 2-cell B_1 in S^2 such that $B_1 \cap F = x_1$, $B_1 \cap (\bigcup_{j=1}^s D_j) = \emptyset$, $C^+_k \subset$ int B_1 for all k, and $C^+_k \cap B_1 \neq \emptyset$ \iff $C^+_k \in \Gamma_1'$.

Now let $\Gamma_2 = \{D^+_j\}^{s}_{j=1}$ be the collection of 2-cells corresponding to the 1-sphere boundary components of M. If s is finite, let $\Gamma_2' = \Gamma_2$. If $s = \infty$, then we can find a subsequence $\Gamma_2' = \{D^+_j\}^{\infty}_{j=1}$ which converges to some unique point $x_2 \in X$. Furthermore, we may assume this subsequence is chosen so that for all cases, $0 \leq s \leq \infty$, we can construct a 2-cell B_2 in S_2 such that $B_2 \cap F = x_2 \in X$, $B_2 \cap (\bigcup_{k=1}^t C^+_k) = \emptyset$, $D^+_j \subset$ int B_2 for all j.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
$D_j \cap B_2 \neq \emptyset \Leftrightarrow D_j \in \Gamma_j'$, and $B_1 \cap B_2 \neq \emptyset \Rightarrow x_1 = x_2$ and $B_1 \cap B_2 = \{x_1\} = \{x_2\}$.

We now consider the points $b \in X$ which are peripheral to M. Observe that for each component K_j of $\text{bd} \ M_c = \text{bd} \ L_c$, the closure of $[0, 1) \times K_j = [0, 1) \times K_j \cup \{b_j\}$ where $b_j \in X$. If each set $F_j = \text{closure} \ of \ [0, 1) \times K_j$ in S_2 is shrunk to the point b_j, we obtain S_2 and X represents the ideal boundary of $\text{int} \ M_c$. Let

$$T = [0, 1) \times \text{bd} \ M_c \cup \left(\bigcup_{j=1}^{s} D_j \right) \cup \left(\bigcup_{k=1}^{r} C_k \right).$$

If the number t of peripheral points is infinite, let $\Omega = \{b_i\}_{i=1}^{\infty}$ be a sequence of peripheral points such that $b_i \neq x_1$ or x_2 for all i and Ω has a unique limit point $x_3 \in X$. Then we can construct a sequence $\Gamma_3 = \{E_i\}_{i=1}^{\infty}$ of pairwise disjoint 2-cells with the following properties:

(a) $b_i \in \text{int} \ E_i$;
(b) $E_i \cap B_v = \emptyset$ for all i and $v = 1$ and 2;
(c) there is a closed 2-annulus $A_i \subset E_i$ with $\text{bd} \ E_i \subset A_i$ such that $A_i \cap T = \alpha_i$, α_i a closed subset of some boundary leaf at b_i, α_i homeomorphic to $[0, 1]$ and $b_i \notin \alpha_i$; and
(d) $\text{cl} \left(\bigcup_{i=1}^{\infty} E_i \right) = \left(\bigcup_{i=1}^{\infty} E_i \right) \cup \{x_3\}$, $x_3 \in X$.

For each i, let $F_i = \text{cl} \left(E_i - A_i \right)$. We may further assume that Γ_3 is chosen so that we can construct a 2-cell B_3 of S^2 such that

(e) $E_i \subset \text{int} \ B_3$ for all i;
(f) $(B_3 - \left(\bigcup_{i=1}^{\infty} F_i \right)) \cap \{x_3\}$;
(g) $(B_3 - \left(\bigcup_{i=1}^{\infty} F_i \right)) \cap T = \emptyset$; and
(h) $B_3 \cap B_v \neq \emptyset$ for $v = 1$ or $2 \Rightarrow x_3 = x_v$ and $B_3 \cap B_v = \{x_v\}$.

If t is finite, and $t' \geq 1$, where t' is the cardinality of the set of peripheral points $\{x_1, x_2\}$, we can similarly construct 2-cells $\{E_i\}_{i=1}^{t'}$, with properties (a)–(c) and a 2-cell B_3 with properties analogous to (e)–(h) above where x_3 is some point of X. If $t' = 0$, construct B_3 satisfying appropriate properties similar to (f) and (h).

Finally, construct a 2-cell B_4 such that $B_4 \cap X = \{x_1\}$, $B_4 \cap T = \emptyset$, and $(B_4 - \{x_1\}) \cap B_v = \emptyset$, $v = 1, 2, 3$; and let $\{H_n\}_{n=1}^{\infty}$ be a disjoint sequence of 2-cells contained in $\text{int} \ B_4$ which converge to x_1.

We will say a 2-cell B contained in a 2-cell C is 1-cell proper in $C \Leftarrow B \cap \text{bd} \ C$ is a 1-cell. Let $Z = T \cup \left(\bigcup_{v=1}^{4} B_v \right)$. Then we can find a set Q of disjoint 2-cells $\{Q_1, Q_2, Q_3\}$ with $Q_i = Q_j$ if $x_i = x_j$ such that
$x_i \in \text{int } Q_i$ for all i and such that there is a 2-cell $P_i \subset \text{int } Q_i$ with $x_i \in \text{int } P_i$ and $(Q_i - \text{int } P_i) \cap Z = \emptyset$. Furthermore, we may assume the following depending on the relation between $x_1, x_2,$ and x_3:

Case 1. $x_1, x_2,$ and x_3 are all distinct. B_v is 1-cell proper in P_v, $v = 1, 2, 3,$ and B_4 is 1-cell proper in P_1.

Case 2. $x_1 = x_2$. B_3 is 1-cell proper in P_3 and B_v is 1-cell proper in P_1, $v = 1, 2,$ and 4.

Case 3. $x_2 = x_3$. B_1 and B_4 are 1-cell proper in P_1 and B_2 and B_3 are 1-cell proper in P_2.

Case 4. $x_1 = x_2 = x_3$. B_v is 1-cell proper in P_1 for $1 \leq v \leq 4$.

By joining (if necessary) the 2-cells of the set Q together by 2-cells lying in $S^2 - (T \cup X)$ we obtain a 2-cell K which, depending on the case, has the following form:
THE DOMAIN RANK OF A SURFACE IS COUNTABLE 487

We now consider surfaces \(S \) of genus 0 contained in the surface \(L_c \) which take one of the following forms:

(i) \(T_{ij} \cap L_c, 1 \leq i, j \leq 4; \)
(ii) \((S^2 - K) \cap L_c; \) or
(iii) \(E_i \cap L_c, 0 < i < M(i), \) where \(M(i) \) depends on \(M. \)

Note that for any of the above surfaces \(S, C_k \cap S \neq \emptyset \iff C_k \subset \text{int} S \) and \(D_j \cap S \neq \emptyset \iff D_j \subset \text{int} S \) and that the union of all \(C_k \) and \(D_j \) which meet a fixed \(S \) nonvoidly is closed in \(S. \) Also \(\text{bd} T_{ij}, \text{bd}(S^2 - K), \) and \(\text{bd} E_i \) do not meet \(\text{bd} L_c. \)

We now describe how to obtain a domain \(D_c \) which generates \(L_c \) and "respects the collection of 2-cells \(\Gamma_1 \) and \(\Gamma_2 \". A domain \(D \) which generates \(M \) is then easily obtained from \(D_c. \)

To obtain \(D_c, \) it is necessary to replace each surface \(S \) of the type mentioned by an appropriate surface of genus 0. Henceforth we will say that a surface \(Q \subset S^2 \) meets

\[
R = \left(\bigcup_{j=1}^{s} D_j \right) \cup \left(\bigcup_{k=1}^{r} C_k \right)
\]

finitely \(\iff \) at most a finite number of elements of \(\{D_j, C_k\} \) intersect \(Q \) nonvoidly and in such case are contained in \(\text{int} Q. \) Note that any surface \(S \) of the type mentioned above has one of the following properties:

(1) \(S = T_{ij} \cap L_c \) and \(T_{ij} \) contains a boundary leaf at \(x_v, 1 \leq v \leq 3, \) \(x_v \in \text{bd} T_{ij}. \) Let \(X_{ij} \) be a closed subset of \(S \) such that \(X_{ij} = R \times [0, 1], \) closure of \(X_{ij} \) in \(S^2 \) is \(X_{ij} \cup \{x_v\}, \) \(\text{bd} T_{ij} - \{x_v\} \) corresponds to \(R \times \{0\} = X_{ij0} \) and \(X_{ij} \cap T = \emptyset. \) Let \(X_{ij1} \) denote the boundary component of \(X_{ij} \) corresponding to \(R \times \{1\}. \) Then we can find a sequence of compact surfaces \(\{L_{ijt}\}_{t=0}^{\infty} \) of genus 0 with the following properties:

(a) \(L_{ijt} \cap X_{ij} = L_{ijt} \cap X_{ij1} \) is a 1-cell;
(b) \(L_{ijt} \cap \text{bd} S \) is a finite nonempty collection of 1-cells at least one of which lies in the same component of \(\text{bd} L_{ijt} \) as \(L_{ijt} \cap X_{ij1}; \)
(c) \(L_{ijt} \) meets \(R \) finitely;
(d) \(L_{ijt} \subset i_A L_{ij(t+1)} = \text{point set interior of} \ L_{ij(t+1)} \) relative to \(A = (S - X_{ij}) \cup X_{ij1}; \)
(e) \(L_0 \) is a 2-cell, \(L_0 \) does not meet \(R, \) and \(L_0 \cap \text{bd} S \) is a 1-cell; and

(f) \(S = X_{ij} \cup \left(\bigcup_{t=0}^{\infty} i_A L_{ijt} \right) = \bigcup_{t=0}^{\infty} i_S (X_{ij} \cup L_{ijt}). \)

(2) \(S = T_{ij} \cap L_c \) and \(T_{ij} \) contains no boundary leaf at \(x_v, 1 \leq v \leq 3, \)
Choose X_{ij} as in (1). Then we can find a sequence of compact surfaces $\{L_{ijt}\}_{t=0}^\infty$ of genus 0 with properties (a), (c), (d), and (f) as in (1) but with (b) and (e) as follows:

(b) $L_{ijt} \cap \text{bd}\ S$ is a finite collection of 1-cells, none of which lie in the same component of $\text{bd}\ L_{ijt}$ as $L_{ijt} \cap X_{ij1}$; and

(e) L_0 is a 2-cell, L_0 does not meet F, and $L_0 \cap \text{bd}\ S = \emptyset$.

(3) $S = (S^2 - K) \cap L_c$ and S is a 2-cell. Note that we may always assume that this is the case since if not, we can move any 2-cell contained in $\text{int}\ (S^2 - K)$ into $\text{int}\ (T_{ij1})$ moving only points inside an appropriate 2-cell and thus obtain the desired situation.

(4) $S = E_i \cap L_c$ and E_i contains a boundary leaf at b_i, $b_i \in \text{int}\ F_i$. Then we can find a sequence of compact surfaces $\{N_{it}\}_{t=0}^\infty$ of genus 0 with the following properties:

(a) $N_{it} \cap \text{bd}\ E_i = \text{bd}\ E_i$ for all t;

(b) Let $J_i = \bigcup \{M|M$ is a leaf at $b_i\}$. Then $N_{it} \cap \text{bd}\ S$ is a finite nonempty collection of 1-cells and $N_{it} \cap J_i$ is a finite nonempty collection of 1-cells all lying in the same component of $\text{bd}\ N_{it}$;

(c) N_{it} meets R finitely;

(d) $N_{it} \subset i_S N_{i(t+1)}$ where i_S denotes point set interior relative to S;

(e) $N_{i0} = A_i$; and

(f) $S = \bigcup_{t=0}^\infty i_S N_{it}$.

Now let

\[A = \{x \in R^2|\frac{1}{2} \leq ||x|| \leq 1\}, \]

\[S_1 = \{x \in R^2| ||x|| = 1\}, \]

\[S_0 = \{x \in R^2| ||x|| = \frac{1}{2}\}, \]

\[\Sigma = \{x \in S_1|x = e^{\pi i/2n}, n \text{ an integer}\} \cup \{(1,0)\}, \]

\[Y = \{(x,0)|-1 \leq x \leq \frac{1}{2}\}. \]

Define V_i, $1 \leq i \leq 5$, by

\[V_1 = A - (\Sigma \cup Y), \]

\[V_2 = A - (S_1 \cup Y), \]

\[V_3 \text{ is a 2-cell}, \]

\[V_4 = A - \Sigma, \text{ and} \]

\[V_5 = A - S_1. \]

We now obtain D_c by making appropriate replacements. If S is of type (1), replace S by $e_{ij}(V_1)$ where e_{ij} is a homeomorphism of $A - Y$ onto $X_{ij} \cup L_{ij0}$ which carries S_0 onto X_{ij0} and Σ into $\text{int}(L_{ij0} \cap \text{bd}\ S)$. If S is of type (2), replace S by $e_{ij}(V_2)$ where e_{ij} is a homeomorphism of $A - Y$ onto $X_{ij} \cup L_{ij0}$ which carries S_0 onto X_{ij0}. If S is of type (3) use S. If S is of
THE DOMAIN RANK OF A SURFACE IS COUNTABLE 489

type (4), replaces S by $e_i(V_4)$ where e_i is a homeomorphism of A onto $N_{i_0} = A_i$ which carries S_0 onto $\text{bd} E_i$ and Σ into $\text{int}(N_{i_0} \cap J_i) = \text{int} \alpha_i$. Finally, replace each 2-cell H_n by $h_n(V_5)$ where h_n is an embedding of V_5 into H_n with $h_n(\text{bd} V_5) = \text{bd} H_n$. Then $D_c = K$ with replacements indicated above does generate L_c and a sketch of how this might be done is given below.

Let P be a 2-cell, $P \subset B_4$ such that $\text{bd} P \cap \text{bd} B_4 = \{x_1\}$. Let $\{K_{i_j}\}_{i_j=1}^\infty$ be a sequence of 2-cells contained in $P \cap \text{int} B_4$ such that $K_{i_j} \cap \text{bd} P$ is a 1-cell, $K_{i_j} \subset i_pK_{i_j+1}$ for all i and $\text{int} B_4 = \bigcup_{i=1}^\infty \text{int}((B_4 - P) \cup K_i)$. Note that $\text{int} K_{i_j} \subset \text{int} K_{i_j+1}$ where $K_{i_j} = (B_4 - P) \cup K_i$. If the number of peripheral points t is finite and $1 \leq t' \leq t$ is the number of peripheral points contained in $\text{int} B_3$, let $\{W_{i_j}\}_{i_j=1}^\infty$ be defined by $W_{i_j} = \bigcup_{r=1}^t N_{i_j}$, where $i_{t_j} = i_{t_j+1}$. If $t = t'$ is infinite, set $W_{i_j} = \bigcup_{r=1}^t N_{i_j}$. Now define $\{G_{i_j}\}_{i_j=1}^\infty$ by $G_{i_j} = \Delta \cup \left(\bigcup_{r=1}^4 (L_{i_j} \cup X_{i_j}) \right) \cup W_{i_j} \cup K_{i_j}$

where $\Delta = S^2 - (\bigcup_{i=1}^{\alpha(M)} \text{int} P_i)$ and where $1 \leq \alpha(M) \leq 3$ and i depend on M.

Therefore for all k, $G_k \subset i_{L_c}G_{k+1}$ meets only a finite number of 2-cells from the sequence Γ_1 and Γ_2 and these are contained in $\text{int} G_{i_j'}$. Furthermore, $L_c - (B_1 \cup B_2) = \bigcup_{k=1}^\infty i_{L_c}G_{k}$. Now define $G_k = G_k \cup (B_1 \cap L_c) \cup (B_2 \cap L_c)$. Then $G_k \subset i_{L_c}G_{k+1}$ and $L_c = \bigcup_{k=1}^\infty i_{L_c}G_k$. We now observe that there exists a sequence of embeddings $\{\alpha_k\}_{k=1}^\infty$ of D_c into L_c such that for all $k \geq 1$, $\alpha_k(D_c)$ is open in L_c; $G_k \subset \alpha_k(D_c) \subset i_{L_c}G_{k+1}$; and α_k carries the sequences Γ_1 and Γ_2 onto the subsequences of Γ_1 and Γ_2 which are contained in G_{k+1} and hence in $i_{L_c}G_{k+1}$. Therefore D_c generates L_c and "respects Γ_1 and $\Gamma_2". To obtain a domain D which generates M we need only remove the interiors of the 2-cells C_{i_j}' and D_{i_j}' in the sequences Γ_1' and Γ_2' and then appropriately identify the boundaries of the C_{i_j}'. Also it is clear from considering cases 1–4 that we can find a countably infinite collection of surfaces $\{D_c\}_{c=1}^\infty$ such that if M is a noncompact surface with nonempty
boundary, then some surface \(D_{g(M)} \) generates \(M \). Therefore, using this and the results of [3], it follows that the domain rank of any surface is at most countably infinite.

REFERENCES

