A NOTE ON THE RELATIONSHIP BETWEEN
WEIL AND CARTIER DIVISORS

JAMES HORNELL

ABSTRACT. Using a generalized equivalence relation, a subquotient of the group of Weil divisors is shown to be isomorphic to the group of Cartier divisors modulo linear equivalence for a reduced subscheme of a projective space over a field. A difficulty of the nonreduced case is discussed.

Let X, \mathcal{O} be a subscheme of a projective space over a field. A generalized equivalence relation is defined on the group of Weil divisors, and if X, \mathcal{O} is reduced, a corresponding subquotient is shown to be isomorphic to the group of Cartier divisors modulo linear equivalence. The generalized equivalence for curves appears in [5]. Projectivity may be replaced by the conditions that any finite number of points of X lie in an affine open of X and that the nonregular locus of X, \mathcal{O} is closed. An example is given which shows one difficulty of the nonreduced case.

By a prime ideal p of \mathcal{O} is meant a subsheaf p of ideals of \mathcal{O} such that for every open $U \subset X$, $\Gamma(U, p)$ is a prime ideal of $\Gamma(U, \mathcal{O})$. These are the points of X by the usual correspondence.

For reducible schemes, the notation for zero-divisors developed in [2] is used. A zero prime ideal N of \mathcal{O} is a proper prime ideal of \mathcal{O} such that for each open $U \subset X$, $\Gamma(U, N)$ is either $\Gamma(U, \mathcal{O})$ or consists entirely of zero divisors of $\Gamma(U, \mathcal{O})$. A divisorial prime ideal p of \mathcal{O} is a prime ideal p of \mathcal{O} which contains a zero prime ideal N of \mathcal{O} such that p/N is of height one in \mathcal{O}/N.

Let \mathcal{Q}/\mathcal{O} denote the total quotient sheaf of \mathcal{O}, and let $K = \Gamma(X, \mathcal{Q}/\mathcal{O})$. Let $\mathcal{D} = \Gamma(X, (\mathcal{Q}/\mathcal{O})^*)/\mathcal{O}^*$, the group of Cartier divisors, let $\mathcal{P} = \Gamma(X, (\mathcal{Q}/\mathcal{O})^*)/\Gamma(X, \mathcal{O}^*)$, and let $\mathcal{C} = \mathcal{D}/\mathcal{P}$. ($\mathcal{P}$ is the set of principal Cartier divisors, and \mathcal{P} defines linear equivalence on \mathcal{D}.) Let (f) denote the principal Cartier divisor defined by $f \in K^*$.

Received by the editors January 31, 1973 and, in revised form, May 3, 1974.

AMS (MOS) subject classifications (1970). Primary 14C20; Secondary 14B05, 14C10.

Key words and phrases. Divisors, Cartier divisors, generalized equivalence relation.
Let $\mathcal{D} \subset X$ be the set of nondivisorial prime ideals p of \mathcal{O} such that if f is a regular element of \mathcal{O}_p then $\mathcal{O}_p f$ is an embedded prime ideal of \mathcal{O}_p. Let \mathcal{C} be the union of \mathcal{D} and the set of nonnormal (nonregular) divisorial prime ideals. If X, \mathcal{O} is reduced, then \mathcal{D} is the set of nondivisorial prime ideals of depth (grade) one, and both \mathcal{D} and \mathcal{C} are finite.

Let D be the group of Weil divisors of X, the free abelian group generated by the divisorial prime ideals of \mathcal{O}. Let p be a divisorial prime ideal of \mathcal{O}, let $f \in K^*$, let f_1 and f_2 be regular elements of \mathcal{O}_p such that $f = f_1/f_2$, and define

$$\lambda_p(f) = \sum_{N \subset p} \left(\ell_{\mathcal{O}_p} \left(\frac{\mathcal{O}_p}{f_1 + N_p} \right) - \ell_{\mathcal{O}_p} \left(\frac{\mathcal{O}_p}{f_2 + N_p} \right) \right),$$

where the sum is over all zero prime ideals $N \subset p$ with p/N of height one in \mathcal{O}/N. Let the principal Weil divisor defined by $f \in K^*$ be $\langle f \rangle = \Sigma_p \lambda_p(f) p$, where the sum is over all divisorial prime ideals p. Let S be the set of all divisorial prime ideals which are contained in some element of \mathcal{C}. Let $D \setminus S$ be the free abelian group generated by those divisorial prime ideals not belonging to S. Let I be the subgroup of D of principal divisors $\langle f \rangle$ where $f \in K^*$ is such that $f_q \in \mathcal{O}_q^*$ for all $q \in \mathcal{C}$, consider I as a subgroup of $D \setminus S$, and let $C = (D \setminus S)/I$. (D/I) is the generalized class group of X, \mathcal{O} and I defines a generalized equivalence relation. Letting P be the subgroup of D of all principal divisors $\langle f \rangle$, D/P is the class group of X, \mathcal{O}, and P defines linear equivalence on D.

To construct the injection from \mathcal{C} to C for X, \mathcal{O} reduced, only the following approximation lemma for Cartier divisors is needed. It is a variant of the usual approximation [3, Lemma 3, p. 166].

Recall that if p_1, \ldots, p_s and p are prime ideals of \mathcal{O}, then $p \subset p_1 \cup \cdots \cup p_s$ if and only if $p \subset p_i$ for some $i = 1, \ldots, s$. Let q_1, \ldots, q_l also be prime ideals of \mathcal{O}. The condition below that

$$p \subset (p_1 \cup \cdots \cup p_s) \cap (q_1 \cup \cdots \cup q_l)$$

is equivalent to $p \subset p_i \cap q_j$ for some i and j.

Lemma. Let X, \mathcal{O} be a subscheme of a projective space over a field. Let p_1, \ldots, p_s be prime ideals of \mathcal{O}, let D be a Cartier divisor on X, and let q_1, \ldots, q_l be prime ideals of \mathcal{O} such that $D_p = (1)_p$ for every prime ideal p of \mathcal{O} with $p \subset (p_1 \cup \cdots \cup p_s) \cap (q_1 \cup \cdots \cup q_l)$. Then there is an
element f of K^* such that $(f)_{p_i} = D_{p_i}$ for $i = 1, \ldots, s$ and $(f)_{q_i} = (1)_{q_i}$ for $i = 1, \ldots, t$.

Proof. First assume the Lemma is true for $s = 1$, and induct on s. Assuming true for $s - 1$, there is an $f'' \in K^*$ with $(f'')_{q_i} = (1)_{q_i}$ for $i = 1, \ldots, t$ and $(f'')_{p_i} = D_{p_i}$ for $i = 1, \ldots, s - 1$. Then $(D - (f''))_{p_i} = (1)_{p_i}$ for $i = 1, \ldots, s - 1$, and $(D - (f''))_{q_i} = D_{q_i}$ for $i = 1, \ldots, t$. It follows that if p is a prime ideal with

$$p \subset (p_1 \cup \cdots \cup p_{s-1} \cup q_1 \cup \cdots \cup q_t) \cap p_s$$

then $(D - (f''))_p = (1)_p$. Thus there is an $f' \in K^*$ such that $(f')_{p_i} = (D - (f''))_{p_i}$, $(f')_{q_i} = (1)_{q_i}$ for $i = 1, \ldots, s - 1$, and $(f')_{q_i} = (1)_{q_i}$ for $i = 1, \ldots, t$. Let $f = f''/f' \in K^*$.

Now let $s = 1$ and $p = p_1$. Let $A = \Gamma(U, \mathcal{O})$ where U is an affine open subset of X meeting each irreducible component of X and containing the points q_1, \ldots, q_t and p which are to be considered as prime ideals of A. Let g_1 and g_2 be regular elements of A such that $D_p = (g_1/g_2)_p$.

Let P_1, \ldots, P_r be the associated prime ideals of Ag_2 for which $g_1/g_2 \notin A_{P_i}$. P_i is not a zero prime ideal because $g_2 \notin P_i$. If $P_i \subset p$ then $D_{P_i} = (g_1/g_2)_{P_i} = (1)_{P_i}$ and $P_i \notin q_1 \cup \cdots \cup q_t$, and let $e_i \in P_i$ be a regular element of A such that $e_i \notin q_1 \cup \cdots \cup q_t$. Or, if $P_i \notin p$, let $e_i \in P_i$ be a regular element of A with $e_i \notin p$. There is an integer $n \geq 1$ such that $(e_1 \cdots e_r)^n g_1 \in Ag_2$. Let $h_1 = (e_1 \cdots e_r)^n g_1 g_2^{-1} \in A$, and let $h_2 = (e_1 \cdots e_r)^n$. Then $D_p = (h_1/h_2)_p$ and no isolated prime ideal of Ah_1 or Ah_2 is contained in $p \cap (q_1 \cup \cdots \cup q_t)$.

Let Q_1, \cdots, Q_s be the associated prime ideals of $A0$ in A. For $j = 1, 2$, let k_j be an element of p contained in all the isolated prime ideals of $A_{P_i} h_j$ such that for $i = 1, \ldots, t$, $k_j \in q_i$ if and only if $h_j \notin q_i$, and such that for $i = 1, \ldots, r$, $k_j \in Q_i$ if $Q_i \notin q_1 \cup \cdots \cup q_t$. There is an integer $n \geq 1$ such that $k_j^n \in A_{P_i} h_j$ for $j = 1, 2$, for k_j is contained in each associated prime ideal of $A_{P_i} h_j$. For $j = 1, 2$, let $f_j = h_j + k_j^{n+1}$. Then $f_j \notin q_1 \cup \cdots \cup q_t, f_j$ is a regular element of $A, 1 + h_j^{-1} k_j^{n+1}$ is a unit of A_p, and $(f_1/f_2)_p = D_p$.

Let $f = f_1/f_2$. Q.E.D.

The injection $\phi: \mathbb{C} \to C$ is to be constructed. Let $\alpha \in \mathbb{C}$. By the Lemma there is a divisor D in α such that $D_p = (1)_p$ for all $p \in \mathbb{C}$, and therefore $D_p =
(1) for all $p \in S$. For a divisorial prime ideal p, let f_1 and f_2 be regular elements of \mathcal{O}_p with $D_p = \langle f_1/f_2 \rangle_p$, and define

$$
\lambda_p(D) = \sum_{N \in \mathcal{O}_p} \left(\ell_{\mathcal{O}_p} \left(\frac{\mathcal{O}_p}{\mathcal{O}_p f_1 + N} \right) - \ell_{\mathcal{O}_p} \left(\frac{\mathcal{O}_p}{\mathcal{O}_p f_2 + N} \right) \right),
$$

where the sum is over all zero prime ideals N of \mathcal{O}_p such that $\mathcal{O}_p p/N$ is of height one in \mathcal{O}_p/N. Let

$$
\lambda D = \sum_{p \notin S} \lambda_p(D) p \in D \setminus S,
$$

where the sum is over all divisorial prime ideals p not contained in S. If $f \in K^*$ and $(f)_p = (1)_p$ for all $p \in \mathfrak{C}$, then $\lambda(f) = \langle f \rangle \in I$. Letting $\phi \alpha$ be the image of λD in $C = (D \setminus S)/I$, $\phi : \mathfrak{C} \to C$ is a well-defined homomorphism.

Theorem. Let X, \mathcal{O} be a reduced subscheme of a projective space over a field. The length homomorphism $\phi : \mathfrak{C} \to C$ is injective. The image of ϕ is the subgroup of locally principal elements of C, which is a subquotient of D. Furthermore $\phi : \mathfrak{C} \to C$ is surjective if and only if \mathcal{O}_p is factorial for all prime ideals p of \mathcal{O} which are contained in no element of \mathfrak{C}.

Proof. The usual argument follows ([4, Propositions, pp. 65, 66]). Let $\mathfrak{D} \setminus \mathfrak{C}$ be the subgroup of \mathfrak{D} of divisors D such that $D_p = (1)_p$ for all $p \in \mathfrak{C}$. Let $D \in \mathfrak{D} \setminus \mathfrak{C}$ with $\lambda D = \langle 1 \rangle$. Let p be a prime ideal of \mathcal{O}, and let f_1 and f_2 be regular elements of \mathcal{O}_p such that $D_p = \langle f_1/f_2 \rangle_p$. If $q \subset p$ is a prime ideal contained in \mathcal{C}, then $D_q = (1)_q$ and $\mathcal{O}_q f_1 = \mathcal{O}_q f_2$. If $q \subset p$ is a divisorial prime ideal not contained in \mathcal{C}, then $\ell_{\mathcal{O}_q} (\mathcal{O}_q f_1 / \mathcal{O}_q f_2) = \ell_{\mathcal{O}_q} (\mathcal{O}_q / \mathcal{O}_q f_1)$ and, because \mathcal{O}_q is normal of Krull dimension one, $\mathcal{O}_q f_1 = \mathcal{O}_q f_2$. Thus $\mathcal{O}_q f_1 = \mathcal{O}_q f_2$ for all depth one (grade one) prime ideals q of \mathcal{O}_p, and

$$
\mathcal{O}_p f_1 = \bigcap_q \mathcal{O}_q f_1 = \bigcap_q \mathcal{O}_q f_2 = \mathcal{O}_p f_2.
$$

Hence $\mathcal{O}_p f_1 = \mathcal{O}_p f_2$ for all prime ideals p of \mathcal{O}, $f_1/f_2 \in \mathcal{O}_p^*$, $D = \langle 1 \rangle$, and $\lambda : \mathfrak{D} \setminus \mathfrak{C} \to D \setminus S$ is injective.

Now, to show that $\phi : \mathfrak{C} \to C$ is injective, let $\alpha \in \mathfrak{C}$ with $\phi \alpha = 0 \in C$, and let $D \in \alpha$ be such that $D_q = (1)_q$ for all q in \mathcal{C}. Let $f \in K^*$ be such that $f \in \mathcal{O}_q^*$ for all q in \mathcal{C} and $\lambda D = \langle f \rangle$. Then by the injectivity of λ above, $D = \langle f \rangle$, and $\alpha = 0$.

$\phi : \mathfrak{C} \to C$ is surjective if and only if $\lambda : \mathfrak{D} \setminus \mathcal{C} \to D \setminus S$ is surjective.

This is true if and only if the group of Cartier divisors is equal to the group
of Weil divisors for each local ring \mathcal{O}_p where p is a prime ideal of \mathcal{O} which is contained in no element of \mathcal{C}, which is in turn equivalent to each \mathcal{O}_p being factorial for all these prime ideals p. Q.E.D.

If \mathcal{O} is not reduced, \mathcal{C} may no longer be finite, and the construction used to define ϕ may not be applicable. For example, let $R = k[x, y, z]/(x^2, xy)$ where k is a field. The reduction of R, $R/Rx = k[y, z]$, is the polynomial ring in two variables over k. Let p be a prime element of $k[z]$. Rp has as associated prime ideals (p, x) and (p, x, y), for (x, y) is an embedded component of (0) in $(k[z]/(p))[x, y]/(x^2, xy) \cong R/Rp$.

Thus $(p, x, y) \in \mathcal{D}$, and \mathcal{D} is infinite. The similar projective example given by the homogeneous ring $k[W, X, Y, Z]/(X^2, XY)$ is such that every homogeneous height one prime ideal is contained in an element of \mathcal{D}.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044

Current address: 2017 North 6th Street Terrace, Blue Springs, Missouri 64015

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use