Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on the relationship between Weil and Cartier divisors

Author: James Hornell
Journal: Proc. Amer. Math. Soc. 48 (1975), 276-280
MSC: Primary 14C10
MathSciNet review: 0369360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a generalized equivalence relation, a subquotient of the group of Weil divisors is shown to be isomorphic to the group of Cartier divisors modulo linear equivalence for a reduced subscheme of a projective space over a field. A difficulty of the nonreduced case is discussed.

References [Enhancements On Off] (What's this?)

  • [1] Séminaire C. Chevalley, 3ième année: 1958/59, Variétés de Picard, Ecole Normal Supérieure, Paris, 1960. MR 28 #1094. MR 0157865 (28:1094)
  • [2] J. Hornell, Divisorial complete intersections, Pacific J. Math. 45 (1973), 217-227. MR 47 #6668. MR 0318119 (47:6668)
  • [3] S. Lang, Abelian varieties, Interscience Tracts in Pure and Appl. Math., no. 7, Interscience, New York, 1959. MR 21 #4959. MR 0106225 (21:4959)
  • [4] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies, no. 59, Princeton Univ. Press, Princeton, N. J., 1966. MR 35 #187. MR 0209285 (35:187)
  • [5] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952), 169-191. MR 14, 80. MR 0048856 (14:80c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14C10

Retrieve articles in all journals with MSC: 14C10

Additional Information

Keywords: Divisors, Cartier divisors, generalized equivalence relation
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society