ON THE PRODUCTS OF WEAKLY LINDELOF SPACES

A. HAJNAL AND I. JUHASZ

ABSTRACT. The aim of this note is to show, without using any special set-theoretic assumptions, that the product of two (weakly) Lindelöf spaces is not necessarily weakly Lindelöf.

In [1] M. Ulmer has constructed two weakly Lindelöf spaces whose product is not so; in his construction, the assumption \(2^{\aleph_0} = 2^{\aleph_1} \) was essentially employed. In this short note we shall provide another such example (where the factors are even Lindelöf), in the construction of which no additional set-theoretic assumption is used.

To start with, we shall deal with some properties of the "half-open" topologies on linearly ordered sets which may be interesting in themselves. We recall that, given a cardinal number \(\alpha \), \(X \) is (weakly) \(\alpha \)-Lindelöf if every open cover of \(X \) has a subcover (weak subcover, i.e. a subfamily whose union is dense in \(X \)) of cardinality \(\leq \alpha \).

Let \((\mathbb{R}, <) \) be a linearly ordered set. We shall denote by \(R^+ \) and \(R^- \), respectively, the spaces on \(R \) for which the half-open intervals of the form \([x, y) \) and \((x, y] \), respectively, form an open basis.

Lemma 1. Let \(\alpha \) be an infinite cardinal number, and let \(\langle R, < \rangle \) be an order complete linearly ordered set in which there is no decreasingly or increasingly ordered subset of type \(\alpha^+ \). Then both \(R^+ \) and \(R^- \) are \(\alpha \)-Lindelöf spaces.

Proof. It will obviously suffice to show that \(R^+ \) is \(\alpha \)-Lindelöf. To see this, let \(\mathcal{U} \) be a cover of \(R^+ \) by basic open sets of the form \([x, y) \). First we claim that for any \(a, b \in R, a < b \), the segment \([a, b] \) can be covered by at most \(\alpha \) members of \(\mathcal{U} \).

Indeed, using the completeness of \(\langle R, < \rangle \), there is a \(c \in [a, b] \) which is the least upper bound of those \(d \in [a, b] \) for which the segment \([a, d] \) can be covered by \(\leq \alpha \) members of \(\mathcal{U} \). We claim that \(c = b \).

Received by the editors October 16, 1973.

Key words and phrases. Product space, Lindelöf, weakly Lindelöf.
Suppose, on the contrary, that \(c < b \). The segment \([a, c]\) itself can be covered by \(\leq \alpha \) members of \(\mathcal{U} \). This is obvious if \(c = a \) or if \(c \) has an immediate predecessor. If not, it follows from the second condition on \((\mathbb{R}, -<) \).

Indeed, in this case we can take an increasing, well-ordered sequence \(\langle c_\xi, \xi < \lambda \rangle \) converging to \(c \) from below, with \(c_\xi \in (a, c) \) and \(\lambda \leq \alpha \). By the choice of \(c \), every segment \([a, c_\xi]\) can be covered by \(\leq \alpha \) members of \(\mathcal{U} \); hence, so can \([a, c) = \bigcup\{[a, c_\xi]: \xi < \lambda\}\), and \([a, c]\) as well.

Now there are two cases to be distinguished.

First, if \(c \) has an immediate successor, say \(c' \), and \([x, y)\) is a member of \(\mathcal{U} \) containing \(c' \), then adding \([x, y)\) to any cover of \([a, c]\) with \(\leq \alpha \) members of \(\mathcal{U} \) we obtain such a cover of \([a, c']\), contradicting the choice of \(c \). Similarly if \(c \) has no immediate successor and \([x, y)\) is a member of \(\mathcal{U} \) containing \(c \), then \([x, y)\) contains a \(c' > c \), hence, adding it to an appropriate cover of \([a, c]\), we again get a contradiction.

Now making use again of the second condition on \((\mathbb{R}, -<) \), we can obtain sequences \(\langle a_\xi: \xi < \alpha \rangle \) and \(\langle b_\xi: \xi < \alpha \rangle \) such that the first one is coinitial and the second is cofinal in \((\mathbb{R}, -<) \). According to what we have proved above, every segment \([a_\xi, b_\eta]\) can be covered by \(\leq \alpha \) members of \(\mathcal{U} \), hence so can

\[
\mathbb{R}^+ = \bigcup\{[a_\xi, b_\eta]: \xi, \eta < \alpha\}.
\]

This completes the proof.

Lemma 2. Let \((\mathbb{R}, -<) \) be a densely ordered set with \(d(\mathbb{R}) > \beta \) (i.e., \(\mathbb{R} \) does not contain a dense subset of cardinality \(\leq \beta \)). Then the product space \(\mathbb{R}^+ \times \mathbb{R}^- \) is not weakly \(\beta \)-Lindelöf.

Proof. Let us denote, as usual, by \(\Delta \) the diagonal \(\Delta = \{(p, p): p \in \mathbb{R}\} \) of the product \(\mathbb{R}^+ \times \mathbb{R}^- \), and put

\[
\Gamma = \{(p, q) \in \mathbb{R}^+ \times \mathbb{R}^-, p < q\}.
\]

First we show that \(\Gamma \) is open in \(\mathbb{R}^+ \times \mathbb{R}^- \). Indeed if \(p < q \) then, by the denseness of \((\mathbb{R}, -<) \), there is an \(r \) with \(p < r < q \), and obviously \([p, r) \times (r, q)\) is a neighbourhood of \((p, q)\) contained in \(\Gamma \).

Thus

\[
\mathcal{U} = \{\Gamma\} \cup \{[p, -\rightarrow) \times (-\leftarrow, p]: p \in \mathbb{R}\}
\]

is an open cover of \(\mathbb{R}^+ \times \mathbb{R}^- \), since for any \((p, q)\) with \(p \geq q \) we have

\[
(p, q) \in [p, -\rightarrow) \times (-\leftarrow, p].
\]

We claim that for any subfamily \(\mathcal{V} \subset \mathcal{U} \) with \(|\mathcal{V}| = \beta \), the union \(\mathcal{V} = \bigcup \mathcal{V} \) is...
not dense in \(R^+ \times R^- \). Indeed, let us put

\[A = \{ p \in R : [p, \rightarrow) \times (\leftarrow, p] \in \mathcal{O} \}. \]

Then \(|A| \leq |\mathcal{O}| = \beta < d(R) \), so there is an open interval \((a, b)\) of \(R \) such that \(A \cap (a, b) = \emptyset \); and by the denseness of \(\langle R, \langle \rangle \rangle \), there is a \(c \) with \(a < c < b \).

Now the set \([c, b) \times (a, c]\) is obviously a nonempty open subset of \(R^+ \times R^- \), and for any \(p \in A \) we have

\[[p, \rightarrow) \times (\leftarrow, p] \cap [c, b) \times (a, c] = \emptyset, \]

since either \(p \geq b \) or \(p \leq a \). Moreover, we have, trivially,

\[V \cap [c, b) \times (a, c] = \emptyset. \]

This indeed shows

\[V \cap [c, b) \times (a, c] = \emptyset, \]

so that \(V \) is not dense; thus \(R^+ \times R^- \) has an open cover with no weak sub-cover of cardinality \(\leq \beta \), and consequently \(R^+ \times R^- \) is not weakly \(\beta \)-Lindelöf.

Now we are ready to present our Example.

Example. Let \(\langle R, \langle \rangle \rangle \) be any linearly ordered set satisfying the following conditions:

(i) \(\langle R, \langle \rangle \rangle \) is continuously (i.e. both densely and completely) ordered;
(ii) \(\langle R, \langle \rangle \rangle \) contains no uncountable decreasing or increasing well-ordered subset;
(iii) \(d(R) = 2^{\aleph_0} \).

(The unit square with the lexicographic ordering is such an ordered set.) Then \(R^+ \) and \(R^- \) are Lindelöf spaces such that \(R^+ \times R^- \) is not weakly Lindelöf, nor even weakly \(\beta \)-Lindelöf for any \(\beta < 2^{\aleph_0} \).

The proof is obvious from Lemmas 1 and 2.

REFERENCE

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, H-1053, BUDAPEST, RÉALTANODA-U 13–15 HUNGARY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WISCONSIN 53706

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use