Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The dimension of the ring of coefficients in a polynomial ring


Author: Jimmy T. Arnold
Journal: Proc. Amer. Math. Soc. 49 (1975), 32-34
DOI: https://doi.org/10.1090/S0002-9939-1975-0360553-4
MathSciNet review: 0360553
Full-text PDF

Abstract | References | Additional Information

Abstract: $ A$ and $ B$ are commutative rings with identity. We say that $ A$ and $ B$ are stably equivalent provided there exists a positive integer $ n$ such that the polynomial rings $ A[{X_1}, \cdots ,{X_n}]$ and $ B[{Y_1}, \cdots ,{Y_n}]$ are isomorphic. If $ A$ and $ B$ are stably equivalent, then they have equal Krull dimension.


References [Enhancements On Off] (What's this?)

  • [1] S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342. MR 46 #5300. MR 0306173 (46:5300)
  • [2] J. Brewer and E. Rutter, Isomorphic polynomial rings, Arch. Math. 23 (1972), 484-488. MR 0320068 (47:8609)
  • [3] D. B. Coleman and E. E. Enochs, Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 247-252. MR 42 #7686. MR 0272805 (42:7686)
  • [4] P. Eakin and K. Kubota, A note on the uniqueness of rings of coefficients in polynomial rings, Proc. Amer. Math. Soc. 23 (1972), 333-341. MR 45 #6815. MR 0297763 (45:6815)
  • [5] P. Eakin and W. Heinzer, A cancellation problem for rings, Proc. Conference on Commutative Algebra, Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin and New York, 1973, pp. 61-77. MR 0349664 (50:2157)
  • [6] M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81-82. MR 45 #3394. MR 0294325 (45:3394)
  • [7] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234. MR 0254021 (40:7234)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0360553-4
Keywords: Polynomial ring, Krull dimension, coefficient ring
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society