Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of Steinitz group rings


Authors: Paul J. Allen and Joseph Neggers
Journal: Proc. Amer. Math. Soc. 49 (1975), 39-42
DOI: https://doi.org/10.1090/S0002-9939-1975-0360668-0
MathSciNet review: 0360668
Full-text PDF

Abstract | References | Additional Information

Abstract: A ring $ R$ with an identity is a (right) Steinitz ring provided any linearly independent subset of a free (right) $ R$-module can be extended to a basis for the module by adjoining elements from any given basis. In this paper, we characterize those group rings which are Steinitz rings by the following:

Theorem. The group ring $ R[G]$ is a Steinitz ring if and only if $ R$ is a Steinitz ring and either (1) char $ R = {p^i}$ and $ G$ is a finite $ p$-group or (2) char $ R = 0$ and $ G = 1$.


References [Enhancements On Off] (What's this?)

  • [1] Byoung-song Chwe and Joseph Neggers, On the extension of linearly independent subsets of free modules to bases, Proc. Amer. Math. Soc. 24 (1970), 466-470. MR 40 #5652. MR 0252432 (40:5652)
  • [2] -, Local rings with left vanishing radical, J. London Math. Soc. (2) 4 (1971), 374-378. MR 44 #6746. MR 0289558 (44:6746)
  • [3] I. G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685. MR 27 #3666. MR 0153705 (27:3666)
  • [4] S. M. Woods, On perfect group rings, Proc. Amer. Math. Soc. 27 (1971), 49-52. MR 42 #6130. MR 0271247 (42:6130)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0360668-0
Keywords: Group ring, Steinitz ring, $ T$-nilpotent Jacobson radical
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society