Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Almost continuity of the Cesàro-Vietoris function


Author: Jack B. Brown
Journal: Proc. Amer. Math. Soc. 49 (1975), 185-188
MSC: Primary 26A09
DOI: https://doi.org/10.1090/S0002-9939-1975-0360943-X
MathSciNet review: 0360943
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the following function due to Cesàro: $ \phi (0) = 0$, and if $ 0 < x \leq 1$,

$\displaystyle \phi (x) = \lim \sup ({a_1} + {a_2} + \cdots + {a_n})/n,$

where the $ {a_i}$ are given by the unique nonterminating binary expansion of $ x = (0.{a_1}{a_2} \cdots )$. Vietoris proved in 1921 that $ \phi $ is connected (as a subset of $ [0,1] \times R$). The purpose of this note is to alter Vietoris's argument in order to prove that $ \phi $ is actually almost continuous in the sense of Stallings, thus answering a question raised recently by B. D. Smith.

References [Enhancements On Off] (What's this?)

  • [1] J. B. Brown, Connectivity, semi-continuity, and the Darboux property, Duke Math. J. 36 (1969), 559-562. MR 39 #7568. MR 0246264 (39:7568)
  • [2] J. L. Cornette, Connectivity functions and images on Peano continua, Fund. Math. 58 (1966), 183-192. MR 33 #6600. MR 0198442 (33:6600)
  • [3] T. Husain, Almost continuous mappings, Prace Mat. 10 (1966), 1-7. MR 36 #3322. MR 0220256 (36:3322)
  • [4] F. B. Jones and E. S. Thomas, Jr., Connected $ {G_\delta }$-graphs, Duke Math. J. 33 (1966), 341-345. MR 33 #702. MR 0192477 (33:702)
  • [5] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33 (1972), 181-185. MR 45 #2106. MR 0293026 (45:2106)
  • [6] J. H. Roberts, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57 (1965), 173-179. MR 33 #3270. MR 0195065 (33:3270)
  • [7] B. D. Smith, An alternate characterization of continuity, Proc. Amer. Math. Soc. 39 (1973), 318-320. MR 47 #4202. MR 0315653 (47:4202)
  • [8] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263. MR 22 #8485. MR 0117710 (22:8485)
  • [9] L. Vietoris, Stetige Mengen, Monatsh. Math. Phys. 31 (1921), 173-204. MR 1549101

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A09

Retrieve articles in all journals with MSC: 26A09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0360943-X
Keywords: Almost continuous, connected graph, Cesàro-Vietoris function
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society