Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stabilizing tensor products


Author: Harold M. Hastings
Journal: Proc. Amer. Math. Soc. 49 (1975), 1-7
MSC: Primary 55E10; Secondary 18D10
DOI: https://doi.org/10.1090/S0002-9939-1975-0362298-3
MathSciNet review: 0362298
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C$ be a symmetric monoidal category with a suspension, and let SC be the resulting stable category. We shall give necessary and sufficient conditions for extending the symmetric monoidal structure to a monoidal structure on SC. These imply that the usual smash product on finite pointed CW complexes cannot be extended to a smash product (with $ {S^0}$ as unit) on finite spectra, hence not on Boardman spectra. This confirms a conjecture of Alex Heller.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy and generalized homology, notes by R. Ming, Univ. of Chicago Math. Lecture Notes, 1971 (mimeographed).
  • [2] J. M. Boardman, Stable homotopy theory, University of Warwick, 1965 onwards (mimeographed).
  • [3] J. M. Boardman and R. M. Vogt, Homotopy-everything $ H$-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117-1122. MR 38 #5215. MR 0236922 (38:5215)
  • [4] S. Eilenberg and G. M. Kelly, Closed categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1966, pp. 421-562. MR 37 #1432. MR 0225841 (37:1432)
  • [5] H. M. Hastings, A smash product for spectra, Bull. Amer. Math. Soc. 79 (1973), 946-952. MR 0343257 (49:8001)
  • [6] A. Heller, Stable homotopy categories, Bull. Amer. Math. Soc. 74 (1968), 28-63. MR 36 #7137. MR 0224090 (36:7137)
  • [7] J. P. May, The stable homotopy category (to appear).
  • [8] D. Puppe, On the stable homotopy category, Math. Institut, Heidelberg, 1972 (mimeographed). MR 0383401 (52:4282)
  • [9] E. H. Spanier and J. H. C. Whitehead, Duality in homotopy theory, Mathematika 2 (1955), 56-80. MR 17, 653. MR 0074823 (17:653b)
  • [10] R. Vogt, Boardman's stable homotopy category, Aarhus Universitet Lecture Notes, no. 21, 1971 (mimeographed).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55E10, 18D10

Retrieve articles in all journals with MSC: 55E10, 18D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0362298-3
Keywords: Smash product, stable smash product, Spanier-Whitehead category, stable category, Boardman spectra, monoidal category, symmetric monoidal category, category with suspension
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society