Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \mathcal{T}$ measure of Cartesian product sets


Author: Lawrence R. Ernst
Journal: Proc. Amer. Math. Soc. 49 (1975), 199-202
MSC: Primary 28A75
DOI: https://doi.org/10.1090/S0002-9939-1975-0367162-1
MathSciNet review: 0367162
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proven that there exists a subset $ A$ of Euclidean $ 2$-space such that the $ 2$-dimensional $ \mathcal{T}$ measure of the Cartesian product of an interval of unit length and $ A$ is greater than the $ 1$-dimensional $ \mathcal{T}$ measure of $ A$. This shows that $ \mathcal{T}$ measure does not extend to Euclidean $ 3$-space the relation that area is the product of length by length. As corollaries, new proofs of some related but previously known results are obtained.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110-120. MR 8, 18. MR 0016448 (8:18f)
  • [2] L. R. Ernst, A proof that $ {\mathcal{C}^2}$ and $ {\mathcal{T}^2}$ are distinct measures, Trans. Amer. Math. Soc. 173 (1972), 501-508. MR 46 # 9266. MR 0310164 (46:9266)
  • [3] L. R. Ernst, A proof that $ {\mathcal{H}^2}$ and $ {\mathcal{T}^2}$ are distinct measures, Trans. Amer. Math. Soc. 191 (1974), 363-372. MR 0361007 (50:13454)
  • [4] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 # 1976. MR 0257325 (41:1976)
  • [5] G. Freilich, On the measure of Cartesian product sets, Trans. Amer. Math. Soc. 69 (1950), 232-275. MR 12, 324. MR 0037893 (12:324a)
  • [6] -, Carathéodory measure of cylinders, Trans. Amer. Math. Soc. 114 (1965), 384-400. MR 30 # 4892. MR 0174692 (30:4892)
  • [7] J. F. Randolph, On generalizations of length and area, Bull. Amer. Math. Soc. 42 (1936), 268-274. MR 1563283

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A75

Retrieve articles in all journals with MSC: 28A75


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0367162-1
Keywords: $ 1$-dimensional measures, $ 2$-dimensional measures, Cartesian product sets, $ \mathcal{T}$ measure, Hausdorff measure, spherical measure, Carathéodory measure
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society