Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Complete domains with respect to the Carathéodory distance


Author: Dong S. Kim
Journal: Proc. Amer. Math. Soc. 49 (1975), 169-174
MSC: Primary 32H15
DOI: https://doi.org/10.1090/S0002-9939-1975-0367297-3
MathSciNet review: 0367297
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Concerning completeness with respect to the Carathéodory distance ($ c$-completeness), the following theorems are shown. A bounded convex (in geometric sense) domain $ D$ in $ {{\mathbf{C}}^n}({{\mathbf{R}}^{2n}})$ is $ c$-complete, so that it is boundedly holomorphic convex. To preserve $ c$-completeness in complex spaces, it is sufficient to have a proper local biholomorphic mapping as follows: Let $ \alpha $ be a proper spread map of a $ c$-hyperbolic complex space $ (X,A)$ onto a $ c$-hyperbolic complex space $ (\tilde X,\tilde A)$; then $ X$ is $ c$-complete if and only if $ \tilde X$ is $ c$-complete. We also show the following $ D$ to be domains of bounded holomorphy: let $ (X,A;\alpha )$ be a Riemann domain and $ D$ a domain in $ X$ with $ \alpha (D)$ bounded in $ {{\mathbf{C}}^n}$. Let $ B(D)$ separate the points of $ D$. Suppose there is a compact set $ K$ such that for any $ x \in D$ there is an analytic automorphism $ \sigma \in \operatorname{Aut} (D)$ and a point $ a \in K$ such that $ \sigma (x) = a$. Then $ D$ is a domain of bounded holomorphy.


References [Enhancements On Off] (What's this?)

  • [1] C. Carathéodory, Ü'ber das Schwarzcehe Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98. MR 1512355
  • [2] H. Cartan, Séeminaire Cartan. Vol. 2, 1951-1954, Benjamin, New York.
  • [3] H. Horstmann, Zur Theorie der Funktionen mehrer komplexen veränderlichen Caratéodorysche Metrik und Reguläritatshüllen, Math. Ann. 108 (1933), 208-217. MR 1512845
  • [4] D. Kim, Boundedly holomorphic convex domains, Pacific J. Math.46 (1973), 441-449. MR 0344520 (49:9259)
  • [5] -, Boundedly holomorphic convex Riemann domain, Proc. Amer. Math. Soc. 41 (1973), 495-497. MR 0328120 (48:6462)
  • [6] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), 468-480. MR38 #736. MR 0232411 (38:736)
  • [7] -, Hyperbolic manifolds and holomorphic mappings, Pure and Appl. Math., 2, Dekker, New York, 1970. MR 43 #3503. MR 0277770 (43:3503)
  • [8] R. Narasimhan, Several complex variables, Chicago Lectures in Mathematics, 1971. MR 0342725 (49:7470)
  • [9] H. Reiffen, Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315-324. MR 33 #4325. MR 0196133 (33:4325)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H15

Retrieve articles in all journals with MSC: 32H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0367297-3
Keywords: $ c$-complete, $ c$-hyperbolic, domain of bounded holomorphy, boundedly holomorphic convex, envelope of bounded holomorphy, Stein manifold of bounded type, analytic automorphism, bounded homogeneous domain
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society