ABSTRACT. Let π be a nilpotent group and let M be a π-module. Under certain finiteness assumptions we prove that the twisted homology groups $H_i(\pi, M)$ vanish for all positive i whenever $H_0(\pi, M) = 0$.

The purpose of this note is to prove the following vanishing theorem:

(1) Theorem. Let π be a finitely generated nilpotent group, and let M be a π-module which is finitely generated over $\mathbb{Z}[\pi]$. Assume that $H_0(\pi, M) = 0$. Then $H_i(\pi, M) = 0$ for all $i \geq 0$.

In the statement of this theorem, the π-module M is, as usual, an abelian group equipped with a left π-action, $\mathbb{Z}[\pi]$ is the integral group ring of π, and $H_i(\pi, M)$, $i \geq 0$, are the twisted homology groups defined in [4].

With a little care, the proof below will also yield the following more general result:

(2) Theorem. Let π be as in (1), and let $\{M_s\}_{s \geq 0}$ be a tower of π-modules, each of which is finitely generated over $\mathbb{Z}[\pi]$. Then if $\{H_0(\pi, M_s)\}_{s \geq 0}$ is protrivial, all the other towers $\{H_i(\pi, M_s)\}_{s \geq 0}$ for $i > 0$ are protrivial too.

For a definition of the terms in this statement, and a discussion of the basic properties of towers, see [1].

Several topological applications of these theorems will be examined in forthcoming papers [2], [3]. Our statements are parallel to the results of [5], although very different in detail.

The author does not know in what sense these theorems are "best possible." There are examples to show that the finite generation condition on M and the nilpotency condition on π are unavoidable, but the finite generation condition on π may well be redundant. In fact, a simple proof of (1)
for arbitrary abelian \(\pi \) appears at the end of this note, but the author cannot see how to generalize it.

Preliminaries. In the discussion below, a \(\pi \)-module \(M \) such that \(H_0(\pi, M) \) vanishes is called *perfect*; a module \(M \) such that \(H_i(\pi, M) \) vanishes for all \(i \geq 0 \) is called *acyclic*. Three observations will be used repeatedly:

\[(3) \quad \text{Any quotient module of a perfect } \pi\text{-module is perfect.} \]

This follows at once from the fact that \(H_0(\pi, -) \) is right exact.

\[(4) \quad \text{If } M' \text{ is a submodule of } M, \text{ } M \text{ is perfect, and } M/M' \text{ is acyclic, } \text{then } M' \text{ is perfect.} \]

This follows at once from the long exact homology sequence of \(0 \to M' \to M \to M/M' \to 0 \).

The integral group ring of a finitely generated nilpotent group is

\[(5) \quad \text{(left and right) noetherian.} \]

This is the backbone of the argument below. A proof is indicated in [6].

Now the proof of (1) proceeds by induction on the number of central cyclic extensions needed to construct \(\pi \). Consequently, we can assume that \(\sigma \) is a cyclic subgroup of the center of \(\pi \) and that the obvious inductive theorem is known for \(\pi/\sigma \)-modules. Let \(M \) be a finitely generated perfect \(\mathbb{Z}[\pi] \)-module. We let \(s \) be a generator of \(\sigma \), and \(T \) the endomorphism of \(M \) given by \(m \mapsto m - s \cdot m \) for all \(m \in M \). The letter \(p \) will denote the order of \(\sigma \), which can be assumed either prime or infinite; if \(p \) is infinity, then by convention every element of every abelian group is said to be of order \(p \).

Special cases. In this paragraph we will prove that \(M \) is acyclic if it has one of the following three special forms:

Type I. \(T \) is injective on \(M \).

Type II. \(T \) is the zero map \(M \to M \), and \(M \) has no elements of order \(p \).

(This type is trivial if \(p = \infty \).)

Type III. \(T \) is the zero map \(M \to M \), and every element of \(M \) has order \(p \).

If \(M \) falls into one of these three classes, we will compute the \(E^2 \)-term of the Lyndon spectral sequence \([M]\)

\[E^2_{p,q} = H_p(\pi/\sigma, H_q(\sigma, M)) \Rightarrow H_{p+q}(\pi, M) \]
and show that it vanishes. Actually, the computation below will only show that

\[H_0(\pi/\sigma, H_j(\sigma, M)) = E^2_{0,j} = 0 \quad \text{for all } j. \]

The induction hypothesis, together with the easily proven fact that each \(H_j(\sigma, M) \) is a finitely generated \(\mathbb{Z}[\pi/\sigma] \)-module, will then give

\[H^2(\pi/\sigma, H_j(\sigma, M)) = E^2_{i,j} = 0 \quad \text{for all } i, j \geq 0. \]

The computation depends on explicit knowledge of the homology groups \(H_i(\sigma, M) \), which are well known to be given as follows [4]:

Case I. \(\sigma \) is finite of order \(p \). Let \(N \) be the endomorphism of \(M \) given by \(1 + s + s^2 + \cdots + s^{p-1} \).

\[
egin{align*}
H_0(\sigma, M) &= \text{kernel } (N) / \text{image } (T), \\
H_{2i}(\sigma, M) &= \text{kernel } (T) / \text{image } (N), \\
H_{2i+1}(\sigma, M) &= \text{image } (T) / \text{kernel } (N).
\end{align*}
\]

Case II. \(\sigma \) is infinite cyclic.

\[
egin{align*}
H_0(\sigma, M) &= \text{kernel } (T), \\
H_1(\sigma, M) &= \text{image } (T), \\
H_{i}(\sigma, M) &= 0 \quad \text{for } i > 1.
\end{align*}
\]

The computation now breaks into three parts, according to the structure of \(M \). Recall that we are given \(H_0(\pi/\sigma, H_i(\sigma, M)) = 0 \).

Type I. In this case \(H_{2i+1}(\sigma, M) = 0 \) for all \(i \geq 0 \). If \(\sigma \) is infinite cyclic, \(H_{2i}(\sigma, M) \), \(i \geq 1 \), is zero, so there is nothing more to show. Otherwise, if \(\sigma \) is finite, each \(H_{2i}(\sigma, M) \), \(i > 1 \), is a sub-\(\pi/\sigma \)-module of \(H_0(\sigma, M) \), and so, by the argument of (4), \(H_0(\pi/\sigma, H_{2i}(\sigma, M)) = 0 \).

Type II. If \(\sigma \) is infinite, there is nothing to show. If \(\sigma \) is finite, then \(H_{2i}(\sigma, M) = 0 \) for \(i > 1 \) and \(H_{2i+1}(\sigma, M) \), \(i \geq 0 \), is a quotient \(\pi/\sigma \)-module of \(H_0(\sigma, M) \), and so, by (3), \(H_0(\pi/\sigma, H_{2i+1}(\sigma, M)) = 0 \).

Type III. If \(\sigma \) is finite, then \(H_1(\sigma, M) \cong M \cong H_0(\sigma, M) \) for all \(i > 0 \), so that \(H_0(\pi/\sigma, H_1(\sigma, M)) = 0 \). If \(\sigma \) is infinite, then \(H_1(\sigma, M) \cong M \cong H_0(\sigma, M) \), and \(H_1(\sigma, M) = 0 \) for \(i > 1 \), so the same argument works.

The general case. Let \(M \) be an arbitrary perfect finitely generated \(\mathbb{Z}[\pi] \)-module. In order to show that \(M \) is acyclic, it is enough to show that there is a finite \(\pi \)-filtration of \(M \),

\[
0 = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_k = M
\]

such that each filtration quotient \(F_{i+1}/F_i \) is of Type I, II, or III. Indeed, if such a filtration exists, then we show, by descending induction on \(i \) that
M/F_i is acyclic for all $0 \leq i \leq k$. The induction starts with the fact that $M/F_k = M/M = 0$ is acyclic. Now suppose that M/F_i is acyclic, $i > 0$.

There is a short exact sequence

$$0 \rightarrow F_i/F_i-1 \rightarrow M/F_i-1 \rightarrow M/F_i \rightarrow 0.$$

By (3) M/F_i-1, as a quotient of M, is a perfect π-module. The long exact homology sequence of this short exact sequence, and the fact that M/F_i is acyclic, show that F_i/F_i-1 is perfect. Since this π-module is of Type I, II, or III, it must be acyclic. Another look at the long exact homology sequence verifies that M/F_i-1 is acyclic.

Constructing such a filtration of M is not hard. Let T be as above, and define $F_i (i \geq 0)$ by

$$F_0 = \{0\} \subset M, \quad F_i = \text{kernel}\{T^i : M \rightarrow M\}, \quad i \geq 1.$$

Since σ is in the center of π, $\{F_i | i \geq 0\}$ is a family of π-equivariant submodules of M. By the noetherian condition (5), this family must have a maximal element, so, for some $K \geq 0$, $F_K = F_{K+1}$. Then M/F_K is of Type I. If σ is infinite cyclic, each F_{i+1}/F_i is already of Type III, and we are done. Otherwise, if σ is finite of order p, it is enough to show that each F_{i+1}/F_i can be filtered (in a π-equivariant way) so that the filtration quotients are of Type II or III. To do this, pick $0 \leq i \leq K - 1$, and define $G_j (j \geq 0)$ by

$$G_0 = F_i, \quad G_j = \{x \in F_{i+1} | p^j x \in F_i\}.$$

Again by the noetherian condition, there is some $J \geq 0$ such that $G_J = G_{J+1}$. Clearly F_{i+1}/G_j is of Type II, and each G_{j+1}/G_j is of Type III. This completes the proof.

A simple proof of the abelian case. We give a conceptual proof for arbitrary abelian π that any perfect π-module M which is finitely generated over $\mathbb{Z}[\pi]$ is acyclic. It is enough to assume that M has a single generator m over $\mathbb{Z}[\pi]$; induction on the number of generators, using (4), then gives the general case.

Let $1 \subseteq \mathbb{Z}[\pi]$ be the augmentation ideal—the kernel of the natural epimorphism $\mathbb{Z}[\pi] \rightarrow \mathbb{Z}$. By hypothesis, $H_0(\pi, M) = \mathbb{Z} \otimes_{\mathbb{Z}[\pi]} M = M/1 \cdot M = 0$, so there must be some $r \in 1$ such that $r \cdot m = m$. Since π is abelian, left multiplication by r commutes with the action of π and so must induce the identity map $M \rightarrow M$, and therefore the identity map $H_*(\pi, M) \rightarrow H_*(\pi, M)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
However, again since π is abelian, left multiplication by r is easily seen to induce a natural transformation of the functor $H_*(\pi, -)$ into itself; this natural transformation is evidently zero on $H_0(\pi, -)$ and so, by the basic theorems about derived functors, must be identically zero. Consequently, the identity map $H_*(\pi, M) \rightarrow H_*(\pi, M)$ coincides with the zero map.

REFERENCES