IDENTITIES FOR CONJUGATION
IN THE STEENROD ALGEBRA

PHILIP D. STRAFFIN, JR.

ABSTRACT. Let χ be the canonical conjugation in the Steenrod algebra \mathcal{A}_2. I prove the identity

$$Sq^{2n} + \chi(Sq^n) = Sq^{2n-1} \chi(Sq^{2n-1})$$

and generalizations of this identity both in \mathcal{A}_2 and in \mathcal{A}_p where p is an odd prime.

The canonical conjugation χ in the mod 2 Steenrod algebra \mathcal{A}_2 can be defined by Thom's recursion formula

$$\sum_{i=0}^{n} Sq^i \chi(Sq^{n-i}) = 0$$

together with the stipulation that $\chi: \mathcal{A}_2 \rightarrow \mathcal{A}_2$ be an anti-isomorphism [3]. Since the elements Sq^{2n} multiplicatively generate \mathcal{A}_2, we can calculate χ if we can calculate $\chi(Sq^{2n})$ for all n. The above recursion formula is unnecessarily cumbersome for this goal. In fact, the recursion can be shortened considerably by use of the following interesting

Identity. $Sq^{2n} + \chi(Sq^n) = Sq^{2n-1} \chi(Sq^{2n-1})$ for all positive integers n.

Applying the identity recursively we obtain the

Formula.

$$\chi(Sq^{2n}) = Sq^{2n} + \sum_{i=1}^{n-1} \left(\prod_{j=1}^{i} Sq^{2n-j} \right) Sq^{2n-i}.$$

For example,

$$\chi(Sq^{16}) = Sq^{16} + Sq^8Sq^8 + Sq^8Sq^4Sq^4 + Sq^8Sq^4Sq^2.$$

In this paper, I will prove a theorem which will imply the above identity, and which also yields results about the mod p Steenrod algebra \mathcal{A}_p when p is an odd prime. The technique is to use Milnor's calculation of χ in the

Received by the editors March 25, 1974.

Key words and phrases. Steenrod algebra, conjugation, Milnor basis, binomial coefficients mod p.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Milnor basis for \mathbb{Q}_p [2], together with properties of binomial coefficients mod p. This technique was noticed independently by Donald Davis, who used it to prove other identities involving χ in \mathbb{Q}_p [1].

Let p be a fixed prime. Let $R = (r_1, r_2, \ldots)$ be a sequence of non-negative integers with only a finite number of nonzero terms. For each such R there is an element β^R in the Milnor basis for \mathbb{Q}_p, of degree $\sum_{i \geq 1} 2(p^i - 1)r_i$ (if $p = 2$, the element is written Sq^R and its degree is $\sum_{i \geq 1} (2^i - 1)r_i$). We define $|R| = \sum_{i \geq 1} p^{i-1}r_i$. Then Davis' main proposition can be written.

Proposition 1. $\beta^m \chi(\beta^n) = (-1)^n \sum_{R} \binom{\frac{|R|}{m}}{\beta^R}$ where the sum is taken over all R such that β^R has the proper degree, i.e. over all R such that

$$\sum_{i \geq 1} (p^i - 1)r_i = (p - 1)(m + n).$$

If $p = 2$, the only necessary modification is to write Sq for β. The binomial coefficient is, of course, to be interpreted mod p.

Proof. See [1]. \Box

The one additional fact about binomial coefficients which we will need is

Proposition 2. Let a and b be integers. If $p^a \leq r \leq p^ab$, then

$$\sum_{k=0}^{b} (-1)^k \binom{r}{p^a k} \equiv 0 \pmod{p}. $$

Proof. Write $r = p^a s + t$, with $1 \leq s \leq b$ and $0 \leq t < p^a$. Then

$$\binom{p^a s + t}{p^a k} \equiv \binom{s}{k} \pmod{p},$$

as is easily seen by comparing the coefficients of x^{p^ak} in the congruence

$$(1 + x)^{p^a s + t} \equiv (1 + x^{p^a})^s (1 + x)^t \pmod{p}. $$

Hence the proposition follows from the well-known identity $\sum_{k=0}^{b} (-1)^k \binom{s}{k} = 0$ for $1 \leq s \leq b$. \Box

We can now prove our main

Theorem. Let $a \geq 0$ and $b > 1$ be integers. Then

$$\sum_{k=0}^{b} \beta^{p^a k} \chi(\beta^{p^a (b-k)}) = 0.$$

Examples. (1) If $a = 0$, we get Thom's original recursion formula in \mathbb{Q}_p.

(2) If $p = 2$, $a = n - 1$, $b = 2$, we get the identity at the beginning of this paper.
(3) If $p = 2$, $a = 2$, $b = 3$, we get
\[\chi(Sq^{12}) + Sq^4 \chi(Sq^8) + Sq^8 \chi(Sq^4) + Sq^{12} = 0. \]
(4) If $p = 3$, $a = 2$, $b = 3$, we get
\[\chi(\mathcal{P}^{27}) + \mathcal{P}^9 \chi(\mathcal{P}^{18}) + \mathcal{P}^{18} \chi(\mathcal{P}^9) + \mathcal{P}^{27} = 0. \]

Proof of Theorem. Consider any $R = (r_1, r_2, \ldots)$ such that
\[\sum_{i \geq 1} (p^i - 1) r_i = (p - 1)p^a b. \]

The coefficient of \mathcal{P}^R in the Milnor base expansion of the sum in the Theorem is, by Proposition 1,
\[\sum_{k = 0}^{b} (-1)^{p^a (b - k)} \binom{|R|}{p^a k} = (-1)^b \sum_{k = 0}^{b} (-1)^k \binom{|R|}{p^a k}. \]
By Proposition 2, this coefficient is zero if $p^a \leq |R| \leq p^a b$. But (*) gives that
\[|R| = \sum_{i \geq 1} p^{i-1} r_i = \frac{1}{p} \left((p - 1)p^a b + \sum_{i \geq 1} r_i \right) \]
and we also have
\[0 \leq \sum_{i \geq 1} r_i \leq \frac{1}{p - 1} \sum_{i \geq 1} (p^i - 1) r_i = p^a b. \]
Hence $((p - 1)/p)p^a b \leq |R| \leq p^a b$; and since $b > 1$, the required inequality holds. \(\Box\)

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, BELOIT COLLEGE, BELOIT, WISCONSIN 53511