Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Random shifts which preserve measure


Authors: Donald Geman and Joseph Horowitz
Journal: Proc. Amer. Math. Soc. 49 (1975), 143-150
MSC: Primary 28A65; Secondary 60G10
MathSciNet review: 0396907
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a flow $ {\theta _g},g \in G$ a group, over a probability space $ (\Omega ,\mathfrak{F},P)$ and a $ G$-valued random variable $ Z$, we exhibit the Lebesgue decomposition of the measure $ P \circ \theta _Z^{ - 1}$ relative to $ P$, and give necessary and sufficient conditions for equality $ (P \circ \theta _Z^{ - 1} = P)$, absolute continuity $ (P \circ \theta _Z^{ - 1} \ll P)$, and singularity $ (P \circ \theta _Z^{ - 1} \bot P)$ in terms of the Haar measure. The proof rests on the theory of ``Palm measures'' as developed by Mecke and the authors. Specializing the group $ G$, we retrieve some known results for the integers and real line, and compute the Radon-Nikodým derivatives in various cases.


References [Enhancements On Off] (What's this?)

  • [1] Hermann Dinges, Random shifts of stationary processes, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 99–116. MR 0211479
  • [2] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • [3] D. Geman and J. Horowitz, Occupation times for smooth stationary processes, Ann. Probability 1 (1973), no. 1, 131–137. MR 0350833
  • [4] Donald Geman and Joseph Horowitz, Remarks on Palm measures, Ann. Inst. H. Poincaré Sect. B (N.S.) 9 (1973), 215–232. MR 0346922
  • [5] J. Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1967), 36–58 (German). MR 0228027
  • [6] -, Invarianzeigenschaften allgemeiner Palmsche Masse (to appear).
  • [7] Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
  • [8] J. Neveu, Temps d’arrêt d’un système dynamique, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 81–94 (French, with English summary). MR 0255767

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A65, 60G10

Retrieve articles in all journals with MSC: 28A65, 60G10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1975-0396907-X
Article copyright: © Copyright 1975 American Mathematical Society