Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Hughes conjecture and groups with absolutely regular subgroups or $ ECF$-subgroups


Author: Joseph A. Gallian
Journal: Proc. Amer. Math. Soc. 49 (1975), 315-318
MSC: Primary 20D25
DOI: https://doi.org/10.1090/S0002-9939-1975-0364442-0
MathSciNet review: 0364442
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a finite $ p$-group and $ {H_p}(G)$ the subgroup generated by the elements of $ G$ of order different from $ p$. Hughes conjectured that if $ G > {H_p}(G) > 1$, then $ \vert G:{H_p}(G)\vert = p$. Although the conjecture is not true for all $ G$, it is shown here that if $ G$ has a subgroup $ L$ such that $ \vert L:{L^p}\vert \leq {p^{p - r}}(r \geq 1)$ and $ {p^r} \leq \vert G:L\vert \leq {p^{r + p}}$ or an ECF-subgroup $ L$ with $ \vert G:{L_2}\vert \leq {p^{p + 2}}$, then $ G$ satisfies the Hughes conjecture.


References [Enhancements On Off] (What's this?)

  • [1] Ja. G. Berkovič, A generalization of the theorems of P. Hall and N. Blackburn and their application to nonregular $ p$-groups, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 800-830 = Math. USSR Izv. 5 (1971), 815-844. MR 45 #3565. MR 0294495 (45:3565)
  • [2] N. Blackburn, On a special class of $ p$-groups, Acta Math. 100 (1958), 45-92. MR 21 #1349. MR 0102558 (21:1349)
  • [3] -, Generalizations of certain elementary theorems on $ p$-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22. MR 23 #A208. MR 0122876 (23:A208)
  • [4] J. A. Gallian, The $ {H_p}$-problem for groups with certain central factors cyclic, Proc. Amer. Math. Soc. 42 (1974) 39-41. MR 0325762 (48:4108)
  • [5] -, On the Hughes conjecture, J. Algebra (to appear). MR 0367055 (51:3297)
  • [6] D. R. Hughes, Partial difference sets, Amer. J. Math. 78 (1956), 650-674. MR 18, 921. MR 0084785 (18:921b)
  • [7] D. R. Hughes and J. G. Thompson, The $ {H_p}$-problem and the structure of $ {H_p}$-groups, Pacific J. Math. 9 (1959), 1097-1101. MR 21 #7248. MR 0108532 (21:7248)
  • [8] B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302. MR 0224703 (37:302)
  • [9] I. D. Macdonald, The Hughes problem and others, J. Austral. Math. Soc. 10 (1969), 475-479. MR 40 #7353. MR 0254143 (40:7353)
  • [10] -, Solution of the Hughes problem for finite $ p$-groups of class $ 2p - 2$, Proc. Amer. Math. Soc. 27 (1971), 39-42. MR 42 #6113. MR 0271230 (42:6113)
  • [11] E. G. Straus and G. Szekeres, On a problem of D. R. Hughes, Proc. Amer. Math. Soc. 9 (1958), 157-158. MR 20 #73. MR 0093549 (20:73)
  • [12] G. E. Wall, On Hughes' $ {H_p}$-problem, Proc. Internat. Conf. Theory of Groups (Canberra, 1965), Gordon and Breach, New York, 1967, pp. 357-362. MR 36 #2686. MR 0219607 (36:2686)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D25

Retrieve articles in all journals with MSC: 20D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0364442-0
Keywords: Finite $ p$-groups, $ {H_p}$-problem, Hughes conjecture, ECF-groups, absolutely regular groups
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society