Linear differential equations where nonoscillation is equivalent to eventual disconjugacy

Author:
Jerry R. Ridenhour

Journal:
Proc. Amer. Math. Soc. **49** (1975), 366-372

MSC:
Primary 34C10

DOI:
https://doi.org/10.1090/S0002-9939-1975-0364759-X

MathSciNet review:
0364759

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions on th order linear differential equations are given which imply that nonoscillation is equivalent to eventual disconjugacy. These conditions are in the form of assumptions that certain boundary-value functions are infinite for all values of the argument.

**[1]**G. B. Gustafson,*The nonequivalence of oscillation and nondisconjugacy*, Proc. Amer. Math. Soc.**25**(1970), 254-260. MR**44**#1872. MR**0284648 (44:1872)****[2]**-,*Eventual disconjugacy of self-adjoint fourth order linear differential equations*, Proc. Amer. Math. Soc.**35**(1972), 187-192. MR**45**# 7178. MR**0298126 (45:7178)****[3]**M. Hanan,*Oscillation criteria for third-order linear differential equations*, Pacific J. Math.**11**(1961), 919-944. MR**26**#2695. MR**0145160 (26:2695)****[4]**M. S. Keener,*Oscillatory solutions and multi-point boundary value functions for certain th-order linear ordinary differential equations*, Pacific J. Math.**51**(1974), 187-202. MR**0352609 (50:5096)****[5]**-,*On the equivalence of oscillation and the existence of infinitely many conjugate points*, Rocky Mountain J. Math.**5**(1975), 125-134. MR**0357972 (50:10437)****[6]**W. Leighton and Z. Nehari,*On the oscillation of solutions of selfadjoint linear differential equations of the fourth order*, Trans. Amer. Math. Soc.**89**(1958), 325-377. MR**21**#1429. MR**0102639 (21:1429)****[7]**Z. Nehari,*Disconjugate linear differential operators*, Trans. Amer. Math. Soc.**129**(1967), 500-516. MR**36**#2860. MR**0219781 (36:2860)****[8]**J. R. Ridenhour,*On the zeros of solutions of th order linear differential equations*, J. Differential Equations**16**(1974), 45-71. MR**0364758 (51:1012)****[9]**T. L. Sherman,*Properties of solutions of th order linear differential equations*, Pacific J. Math.**15**(1965), 1045-1060. MR**32**#2654. MR**0185185 (32:2654)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0364759-X

Keywords:
Linear differential equations,
oscillation,
nonoscillation,
conjugacy,
disconjugacy,
eventual disconjugacy,
th conjugate point,
extremal solutions,
boundary-value functions,
distributions of zeros

Article copyright:
© Copyright 1975
American Mathematical Society