Linear differential equations where nonoscillation is equivalent to eventual disconjugacy

Author:
Jerry R. Ridenhour

Journal:
Proc. Amer. Math. Soc. **49** (1975), 366-372

MSC:
Primary 34C10

MathSciNet review:
0364759

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions on th order linear differential equations are given which imply that nonoscillation is equivalent to eventual disconjugacy. These conditions are in the form of assumptions that certain boundary-value functions are infinite for all values of the argument.

**[1]**G. B. Gustafson,*The nonequivalence of oscillation and nondisconjugacy*, Proc. Amer. Math. Soc.**25**(1970), 254–260. MR**0284648**, 10.1090/S0002-9939-1970-0284648-4**[2]**G. B. Gustafson,*Eventual disconjugacy of selfadjoint fourth order linear differential equations*, Proc. Amer. Math. Soc.**35**(1972), 187–192. MR**0298126**, 10.1090/S0002-9939-1972-0298126-1**[3]**Maurice Hanan,*Oscillation criteria for third-order linear differential equations.*, Pacific J. Math.**11**(1961), 919–944. MR**0145160****[4]**M. S. Keener,*Oscillatory solutions and multi-point boundary value functions for certain 𝑛th-order linear ordinary differential equations*, Pacific J. Math.**51**(1974), 187–202. MR**0352609****[5]**M. S. Keener,*On the equivalence of oscillation and the existence of infinitely many conjugate points*, Rocky Mountain J. Math.**5**(1975), 125–134. MR**0357972****[6]**Walter Leighton and Zeev Nehari,*On the oscillation of solutions of self-adjoint linear differential equations of the fourth order*, Trans. Amer. Math. Soc.**89**(1958), 325–377. MR**0102639**, 10.1090/S0002-9947-1958-0102639-X**[7]**Zeev Nehari,*Disconjugate linear differential operators*, Trans. Amer. Math. Soc.**129**(1967), 500–516. MR**0219781**, 10.1090/S0002-9947-1967-0219781-0**[8]**Jerry R. Ridenhour,*On the zeros of solutions of 𝑛th order linear differential equations*, J. Differential Equations**16**(1974), 45–71. MR**0364758****[9]**Thomas L. Sherman,*Properties of solutions of 𝑛𝑡ℎ order linear differential equations*, Pacific J. Math.**15**(1965), 1045–1060. MR**0185185**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0364759-X

Keywords:
Linear differential equations,
oscillation,
nonoscillation,
conjugacy,
disconjugacy,
eventual disconjugacy,
th conjugate point,
extremal solutions,
boundary-value functions,
distributions of zeros

Article copyright:
© Copyright 1975
American Mathematical Society