Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On Euler's criterion for cubic nonresidues

Author: Kenneth S. Williams
Journal: Proc. Amer. Math. Soc. 49 (1975), 277-283
MSC: Primary 10A10
MathSciNet review: 0366792
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ p$ is a prime $ \equiv 1 \pmod 3$ there are integers $ L$ and $ M$ such that $ 4p = {L^2} + 27{M^2},L \equiv 1\pmod 3$. Indeed $ L$ and $ {M^2}$ are unique. If $ D$ is a cubic nonresidue $ \pmod p$ it is shown how to choose the sign of $ M$ so that

$\displaystyle {D^{(p - 1)/3}} \equiv (L + 9M)/(L - 9M)\pmod p.$

The case $ D = 2$ has been treated by Emma Lehmer.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10A10

Retrieve articles in all journals with MSC: 10A10

Additional Information

PII: S 0002-9939(1975)0366792-0
Keywords: Euler's criterion, cyclotomy, cyclotomic numbers, root of unity modulo $ p$, cubic residues and nonresidues
Article copyright: © Copyright 1975 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia